Image: Carl Knox, OzGrav-Swinburne University of Technology

Current status and future prospects of gravitational-wave observations

Soichiro Morisaki ICRR/University of Tokyo

Feb. 6, 2023

The extreme Universe viewed in very-high-energy gamma-rays 2022

On September 14, 2015, the first direct detection of gravitational waves was achieved.

2

The signal is consistent with **binary black hole merger** with $m_1 = 36^{+5}_{-4} M_{\odot}, m_2 = 29^{+4}_{-4} M_{\odot}.$

3

Gravitational-wave observatories

Future observations

So far, LIGO-Virgo has conducted three observing runs (O1, O2, O3).

Figure: Observing plan (<u>https://observing.docs.ligo.org/plan/</u>)

5

GW170817 B. P. Abbott et al., Phys. Rev. Lett. **119**, no.16, 161101 (2017). B. P. Abbott et al., Astrophys. J. Lett. **848**, no.2, L12 (2017).

- First detection of binary neutron star in O2: $m_1 = 1.36 - 1.60 M_{\odot}, m_2 = 0.86 - 1.36 M_{\odot}.$
- Electromagnetic (EM) counterparts from radio to gamma-ray
 → Multimessenger astronomy with GWs

Figure: Localization of GW, gamma-ray, and optical signal

Public alert

Time since gravitational-wave signal **Original Detection** Automated Vetting 1st Preliminary Classification || Alert Sent Rapid Sky Localization Cluster additional events **2nd Preliminary** Re-annotate 📕 Alert Sent Parameter Estimation **Initial Alert or** Human Vetting **Retraction Sent** Classification **Parameter Estimation** Update Alert Sent Classification 10 second 1 minute 1 hour 1 day 1 week Figure: Timeline of public alert

• Automated public alert from O3.

• False alarm rate threshold for compact binary coalescence: 1/(10 months)

Figure: Estimated source localization of GW190425

1	1		
BNS	>99%		
Ferrestrial	<1%		
NSBH	0%		
MassGap	0%	BNS=Binary n NSBH=	eutron star
BBH	0%	Neutron Star- BBH=Binary B	Black Hole lack Hole

Figure: Classification of GW190425

8

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

GW190412 R. Abbott et al., Phys. Rev. D **102**, no. 4, 043015 (2020).

- Asymmetric BBH: $m_1 = 30.1^{+4.6}_{-5.3} M_{\odot}$, $m_2 = 8.3^{+1.6}_{-0.9} M_{\odot}$.
- Strong evidence of higher-order moments ($p \le 6 \times 10^{-4}$)

Figure: Time-frequency plot of LIGO-Livingston data

Figure: Energy stacked along $f(t) = \alpha f_{quad}(t)$, $Y(\alpha)$.

10

GW190814 R. Abbott et al., Astrophys. J. Lett. **896**, no.2, L44 (202

- Asymmetric binary: $m_1 = 23.2^{+1.1}_{-1.0} M_{\odot}, \ m_2 = 2.59^{+0.08}_{-0.09} M_{\odot}.$
- The secondary object can be the heaviest NS or the lightest BH.
- Strong evidence of higher-order moments $(p < 2.5 \times 10^{-4})$
- No electro-magnetic counterparts.

Figure: Compact-object mass from supernovae

- Heavy BBH: $m_1 = 85^{+21}_{-14}M_{\odot}$, $m_2 = 66^{+17}_{-18}M_{\odot}$.
- The primary mass m_1 is in the pair-instability mass gap (65 $120M_{\odot}$).
- The remnant is an intermediate mass black hole: $M_f = 142^{+28}_{-16}M_{\odot}$.

GW190521

 Possible association of optical EM counterpart detected by Zwicky Transient Facility (ZTF) (False positive probability of 0.1%).

M. J. Graham et al., Phys. Rev. Lett. **124**, no.25, 251102 (2020).

- The association still uncertain.
 - Other studies found the association is not significant enough.

G. Ashton et al., Class. Quant. Grav. **38**, 23, 235004 (2021). A. Palmese et al., Astrophys. J. Lett. **914**, 2, L34 (2021).

• Estimated distance of GW190521 depends on waveform model, and the overlap is uncertain.

Figure: Estimated location of GW190521 (red region) and ZTF19abanrhr (reticle)

Figure: Estimated luminosity distance to GW190521 from various waveform models and ZTF19abanrhr (dashed vertical line) (taken from G. Ashton et al., Class. Quant. Grav. **38**, 23, 235004 (2021).)

BBH population: Mass

R. Abbott et al., arXiv: 2111.03634.

Figure: Differential event rate, dR/dm_1 , from various population models

- Local maxima at $m_1 \sim 10 M_{\odot}$ and $m_1 \sim 35 M_{\odot}$ (> 99% credibility)
- Inconclusive evidence for pair-instability mass gap ($65 120 M_{\odot}$).

BBH population: Redshift

R. Abbott et al., arXiv: 2111.03634.

- Merger rate increases with redshift *z*.
- Merger rate $\propto (1 + z)^{\kappa}$, with $\kappa > 0$ (at 99.6%).
- $\kappa = 2.9^{+1.7}_{-1.8}$ (90% Cl)
- No evidence that mass distribution varies with redshift.

Figure: Redshift evolution of merger rate 5

BBH population: Spin

Frequency evolution is predominantly affected by χ_{\parallel} , a spin component aligned with orbital angular momentum \vec{L} . C. Cutler and E. E. Flanagan, PRD 49, 2658 (1994).

Figure: Gravitational waves with various χ_{\parallel} values, $(m_1, m_2) = (20 M_{\odot}, 20 M_{\odot})$

BBH population: Spin

Perpendicular spin components, $\chi_{1,\perp}$ and $\chi_{2,\perp}$, cause precession of the orbital plane, which induces signal amplitude modulation.

T. A. Apostolatos et al., PRD 49, 6274 (1994).

BBH population: Spin e.g. I. Mandel and A. Farmer, arXiv: 1806.05820

BBH population: Spin

R. Abbott et al., arXiv: 2111.03634.

- Spin magnitude generally small ($\chi \leq 0.4$), but not-vanishing.
- Significant spin-orbit misalignment, but $\cos \theta = 1$ preferred.

GW190425 B. P. Abbott et al., Astrophys. J. Lett. **892**, no.1, L3 (2020).

- Heavy binary neutron star (BNS): $m_1 = 1.61 - 2.52 M_{\odot}, m_2 = 1.12 - 1.68 M_{\odot}.$
- LIGO-Hanford was not observing.
 → Large localization uncertainties (~ 16% of the whole sky). The source is also distant (90 230 Mpc).
- No EM or neutrino counterparts.
- The heaviest merging BNS observed so far.

Figure: 2D Localization of GW190425

GW200105 & GW200115 R. Abbott et al., Astrophys. J. Lett. **915**, no.1, L5 (2021).

	m_1	m_2
GW200105	$8.9^{+1.2}_{-1.5}M_{\odot}$	$1.9^{+0.3}_{-0.2}M_{\odot}$
GW200115	$5.7^{+1.8}_{-2.1}M_{\odot}$	$1.5^{+0.7}_{-0.3}M_{\odot}$

90% credible intervals centered at the medians

- Masses consistent with neutron starblack hole (NSBH)
- No direct evidence of secondary objects being neutron stars (No EM counterparts, no tidal information)

	GW200105	GW200115
$\overrightarrow{\chi_1}$	$ \overrightarrow{\chi_1} < 0.23$ (90% confidence)	$\begin{array}{c} \chi_{1,\parallel} = -0.19^{+0.24}_{-0.50} \\ P(\chi_{1,\parallel} < 0) = 88\% \end{array}$
$\overrightarrow{\chi_2}$	Unconstrained	Unconstrained

GW200105 & GW200115

R. Abbott et al., Astrophys. J. Lett. **915**, no.1, L5 (2021).

GW200115

• Negative $\chi_{1,\parallel}$ is correlated with the low value of the primary mass m_1 , which is in the lower mass gap $3M_{\odot} \leq m_1 \leq 5M_{\odot}$.

•
$$P(3M_{\odot} \le m_1 \le 5M_{\odot}) = 30\%.$$

component mass

Future observations

The fourth observing run (O4) will start on May 24. The duration is 18 months.

Figure: Observing plan (https://observing.docs.ligo.org/plan/)

Public alert in O4: New FAR threshold

The false alarm rate threshold for public alerts will be lowered to 2/day.

There will be two classes of alerts:

- **Significant** gravitational-wave alerts with false alarm rate less than 1/ month for compact binary coalescence (CBC) and 1/year for burst that pass automated and manual verification tests.
- Low Significance gravitational-wave alerts with false alarm rate between 1/months 2/day for CBC and 1/year 2/day for burst.

See <u>https://dcc.ligo.org/LIGO-G2300151/public</u> for more details.

Public alert in O4: Early Warnings R. Magee et al., ApJL 910 L21 (2021).

1-10/yr early warnings expected 1s before merger if no system latencies.

Public alert in O4: Alert timeline

• Preliminary (2)

final in less that 300s

Rapid Response team decision —

- Initial/Retraction Alert
- Update (1)
-
- Update (n)

- Preliminary 1a alert when significance is updated.
- "Significant" alerts will be followed by Rapid Response team discussions, automated and manual verification tests, parameter estimation updates, etc.

Public alert in O4: External trigger search

Searches for coincidence between GWs and external triggers.

- **RAVEN [1]** will search for temporal/space-time coincidence with gamma-ray bursts from Fermi, Swift and AGILE, as well as supernova alerts from the SNEWS. It computes coincident FAR if any coincidence.
- LLAMA [2, 3] will search for coincidence with High Energy Neutrino triggers from IceCube.

[1] Urban, A. L. 2016, Ph.D. Thesis. <u>https://dc.uwm.edu/etd/1218/</u>
[2] Bartos, I., Veske, D., Keivani, A., et al. 2019, PRD **100**, 083017.
[3] Countryman, S., Keivani, A., Bartos, I., et al. 2019. arXiv: 1901.05486

Expectation

- Based on the best possible sensitivity and SNR threshold of 8.
- More realistic values will be available once engineering run is performed.
- Detections can be ~1/day in 04

		BNS	NSBH	BRH
Annual number of public alerts (log-normal merger rate uncertainty \times Poisson counting uncertainty)				
04	HKLV	$36\substack{+49\\-22}$	6^{+11}_{-5}	$260\substack{+330 \\ -150}$
05	HKLV	$180\substack{+220 \\ -100}$	31^{+42}_{-20}	870^{+1100}_{-480}
Median lum i (Mpc, Monte	inosity distance e Carlo uncertainty)			
04	HKLV	$398\substack{+15 \\ -14}$	770^{+67}_{-70}	$2685\substack{+53 \\ -40}$
05	HKLV	$738\substack{+30 \\ -25}$	$1318\substack{+71 \\ -100}$	$4607\substack{+77\\-82}$
Median 90% credible area (deg ² , Monte Carlo uncertainty)				
04	HKLV	$1860\substack{+250\\-170}$	$2140\substack{+480 \\ -530}$	$1428\substack{+60\\-55}$
05	HKLV	$2050\substack{+120 \\ -120}$	$2000\substack{+350 \\ -220}$	1256_{-53}^{+48}

(Taken from https://emfollow.docs.ligo.org/userguide/capabilities.html)

- 90 compact binary coalescences detected.
 - Exceptional events: asymmetric BBH, mass gaps (low and high), heavy BNS, NSBH
 - BBH population: structure in mass distribution, merger rate increases with redshift, significant spin-orbit misalignment (but not necessarily isotropic)
- Public alert in O4
 - New false alarm rate threshold: 2/day
 - Early warnings
 - Coincidence with external triggers
- Detections can be ~1/day in O4!

Extra slides

Public alert in O4: New FAR threshold

```
"alert_type": "PRELIMINARY",
"time_created": "2018-11-01T22:34:49Z",
"superevent_id": "MS181101ab",
"urls": { "gracedb": "https://example.org/superevents/MS181101ab/view/" },
"event": {
    "time": "2018-11-01T22:22:46.654Z",
   "far": 9.11069936486e-14,
    "significance": "low significance" # 2/day > FAR > (1/month CBC and 1/year BURST)
                    "significant"
                                       # (1/month CBC and 1/year BURST) > FAR
    "instruments": [ "H1", "L1", "V1"],
    "group": "CBC",
    "pipeline": "gstlal",
    "search": "MDC",
    "classification": { "BNS": 0.95, "NSBH": 0.01, "BBH": 0.03, "Terrestrial": 0.01},
    "properties": { "HasNS": 0.95, "HasRemnant": 0.91, "HasMassGap": 0.01},
    "skymap": "U01NUExFICA9ICAgICAgICAgICAgICAgICAgICBUIC8gY29uZm..."
"external_coinc": null }
```

BBH population: Mass

- Gaussian peak at $m_1 = 34^{+9.2}_{-5.1} M_{\odot}$
- Equal-mass favored $p(q) \propto q^{\beta}$, with $\beta = 1.1^{+1.7}_{-1.3}$.

THE ASTROPHYSICAL JOURNAL LETTERS, 915:L5 (24pp), 2021 July 1

© 2021. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

Observation of Gravitational Waves from Two Neutron Star-Black Hole Coalescences

Abstract

We report the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent with neutron star-black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as <u>GW200105 and GW200115</u>; the first was observed by LIGO Livingston and Virgo and the second by all three LIGO-Virgo detectors. The source of GW200105 has component masses $8.9^{+1.2}_{-1.5}$ and $1.9^{+0.3}_{-0.2} M_{\odot}$, whereas the source of GW200115 has component masses $5.7^{+1.8}_{-2.1}$ and $1.5^{+0.7}_{-0.2} M_{\odot}$ (all measurements quoted at the 90% credible level). The probability that the secondary's mass is below the maximal mass of a neutron star is 89%–96% and 87%–98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are 280^{+110}_{-110} and 300^{+150}_{-100} Mpc, respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain the spin or tidal deformation of the secondary component for either event. We infer an NSBH merger rate density of 45^{+75}_{-33} Gpc⁻³ yr⁻¹ when assuming that GW200105 and GW200115 are representative of the NSBH population or 130^{+112}_{-69} Gpc⁻³ yr⁻¹ under the assumption of a broader distribution of component masses.

Detector network

- Detector ranges LIGO-Hanford: ~120 Mpc LIGO-Livingston: ~130-140 Mpc Virgo: ~50 Mpc
- LIGO-Hanford was not operating at the time of GW200105.
- Noise excess at ~20 Hz in Livingston for GW200115
 → exclude data below 25Hz in

parameter estimation

(Hz)

Time-frequency maps of data containing GW200105 (left) and GW200115 (right)

GW200115

Detection summary

Event	GW200105	GW200115
Signal-to-Noise Ratio (H, L, V)	N/A, <u>13.6</u> , 2.7 (Livingston-only)	<u>6.9, 8.6,</u> 2.9 (HL coincidence)
False Alarm Rate	low latency: 1/(15 days) offline: 1/(2.8 yr)	low latency: 1/(1513 yr) offline: From 1/(182 yr) to < 1/(10 ⁵ yr)
GCN Notice Latency	More than <mark>1 day</mark>	After <mark>6 mins</mark>
Sky localization	7700 deg ² (low latency)	900 deg ² (low latency)
	GW200105 0° 0° 0° -30° -60° -60° -60° -60° -60° -60° -60° -60° -60° -60° -60° -60° -30° -60° -60° -30° -60° -60° -30° -60° -60° -30° -60	GW200115 0° 0° -30° -60° -
Distance	~265 Mpc (low latency)	~330 Mpc (low latency)
# Follow-up GCNs	21 (No EM/neutrino counterparts, e.g. [1])	31 (No EM/neutrino counterparts)

Masses

	m_1	<i>m</i> ₂
GW200105	$8.9^{+1.2}_{-1.5}M_{\odot}$	$1.9^{+0.3}_{-0.2}M_{\odot}$
GW200115	$5.7^{+1.8}_{-2.1}M_{\odot}$	$1.5^{+0.7}_{-0.3}M_{\odot}$

All measurements quoted at the 90% credible level

$$\bigcup_{i=1}^{n}$$

Plausible neutron stars

Modest support for GW200115's primary being in lower mass gap, $P(3M_{\odot} \le m_1 \le 5M_{\odot}) = 30\%.$

39

GW200105: single-detector event

Are the secondary objects neutron stars?

Comparison with the maximum mass of a neutron star (NS)

- *M*_{max,TOV} Equation of state inferred from radio, GW and X-ray observations (Landry, Essick & Chatziioannou 2020)
- *M*_{max,GNS} Fit to Galactic NS population (Farr & Chatziioannou 2020)
- *M*_{max}(spin) Allows for potentially large NS spins (not shown)

 $p(m_2 < M_{\text{max}}) \sim 95\%$ for either case.

Estimated masses of secondary objects in comparison with the maximum NS mass

Are the secondary objects neutron stars?

No detections of matter signatures.

- No associated EM counterparts
- No information on tidal deformability from GWs (See the right figure)
- →Do not exclude light black holes (e.g. primordial black holes).

Estimated tidal deformabilities of secondary objects

Merger rate

Event-based rate

- Assumes 1 count each from GW200105/GW200115-like population
- 12-120 Gpc⁻³yr⁻¹

Broad population rate

- Includes all foreground triggers in NSBH regime $(m_1 \in [2.5, 40]M_{\odot} \text{ and } m_2 \in [1, 3]M_{\odot})$
- 61-242 Gpc⁻³yr⁻¹

Formation scenario

Distance-inclination

Distance
 GW200105: 280⁺¹¹⁰₋₁₁₀ Mpc
 GW200115: 300⁺¹⁵⁰₋₁₀₀ Mpc
 (c.f. 40 Mpc for GW170817)

• Inclination Both events disfavor $\theta_{JN} \sim 90^{\circ}$, suppressing higher-order moments.

Waveform systematics

Miscellaneous properties

 Remnant objects Mass

$$M_{\rm f} = \begin{cases} 10.4^{+2.7}_{-2.0} M_{\odot} & (\text{GW200105}) \\ 7.8^{+1.4}_{-1.6} M_{\odot} & (\text{GW200115}) \end{cases}$$

Spin

$$\chi_{\rm f} = \begin{cases} 0.43^{+0.04}_{-0.03} & (\text{GW200105}) \\ 0.38^{+0.04}_{-0.02} & (\text{GW200115}) \end{cases}$$

• Test of general relativity

Less stringent constraints than the current ones due to the weak signals.

• Higher-order modes

Inconclusive

• Precession effect

Inconclusive

• Lensing scenario unlikely for GW200105 and GW200115, as masses do not overlap.

Neutron star masses

Consistent with Galactic NS population from EM observations

Black hole masses

GW200115 BH may be in the lower mass gap

- $P(3M_{\odot} \le m_1 \le 5M_{\odot}) = 30\%$
- Correlated with negativelyaligned primary spin

Galactic NS masses from Alsing et al. 2018, MNRAS 478, no.1, 1377-1391

Electromagnetic observations

No significant detections of electromagnetic counterparts for both events.

X

e.g. S. Anand et al., Nature Astron. 5, 46 (2021).

This is consistent with

- **No** tidal disruption expected due to highly asymmetric masses (and negative spins for GW200115)
- The large distances (~7 times more distant than GW170817) and large uncertainties of their sky localization

≻Observation of GW inspirals consistent with neutron star-black hole binaries: $\frac{GW200105}{GW200115}$: $9M_{\odot}$ + 1.9 M_{\odot} (single-detector detection) $\frac{GW200115}{GW200115}$: $6M_{\odot}$ + 1.5 M_{\odot} (coincident detection)

Estimated masses *suggest* they are neutron star-black hole binaries.

- Secondary masses smaller than the maximum mass of a neutron star.
- However, no detections of matter signatures in GW or EM observations.

Estimated merger rate of ~ 100 Gpc⁻³yr⁻¹ consistent with several formation scenarios.

Stay tuned for more O3b results!

Tidal deformability

The combination enters the leading tidal effect:

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}.$$

For NSBH ($\Lambda_1 = 0$),

$$\tilde{\Lambda} = \frac{16}{13} \frac{12 + q}{(1+q)^5} q^4 \Lambda_2, \qquad \left(q \equiv \frac{m_2}{m_1}\right)$$

which becomes vanishing for highly asymmetric masses $(q \rightarrow 0)$.

Expected stochastic GW background

Figure: Expected stochastic gravitational-wave background (Taken from R. Abbott et al., arXiv: 2111.03634).

51