AXEL実験: 0vββ探索に向けた 高圧キセノンガス検出器開発

中村 輝石(京都大学)

ニュートリノの質量

- ニュートリノ振動 ⇒ ニュートリノは質量を持つ
- ・他のフェルミオンに比べ6桁以上も軽い(不自然)
- ・ 質量の絶対値の測定は軽すぎて難しい(KATRIN などが挑戦中)

マヨラナ or ディラック

- ニュートリノがディラック粒子かマヨラナ粒子かわ かっていない

エットレ・マヨラナ 1906年 - 1938年に行方不明 "中性フェルミオンは自身の 反粒子になり得る"

- 1回のベータ崩壊ではエネルギー的に損をするが、2回
 ベータ崩壊をするとエネルギー的に得をする原子核で起きる
- 2つの電子と2つの反電子ニュートリノが発生
- もしニュートリノがマヨラナ粒子だと対消滅でき、2つの電子のみが発生する。エネルギー和はQ値に等しくなる

ニュートリノレス二重ベータ崩壊

- なぜ0vββを探すのか?
 - ニュートリノのマヨラナ性の検証(新!)
 - 質量階層性(10meV以下へ)
- Ονββの特色

 珍しい(というかまだ未発見)
 信号は2つの電子(エネルギー和は一定)
- Ονββ検出器への要請
 - エネルギー分解能が良い(bg除去)
 - 低放射能なモノでできている(bg除去)
 - バックグラウンド除去能力(bg除去)
 - 大質量(統計up)
 - 崩壊核の存在比、濃縮技術(統計up)

0.8

0.0

0.2

0.4

0.6

色んな実験があります

・原子核選び

原子核	Q值 keV	自然存在比 %	実験
48Ca	4271	0.19	CANDLES
76Ge	2039	7.8	GERDA、MAJORANA
96Zr	3351	2.8	ZICOS
100Mo	3034	9.6	NEMO
130Te	2527	34.5	CUORE, SNO
136Xe	2457	8.9	EXO、KamLAND-Zen、NEXT

SNO+ NEMO GERDA も低放射能環 MAJORANA 度を求めて EXO NEXT CANDLES 地下へ

AXEL experiment

- High pressure xenon gas TPC for $0\nu\beta\beta$ search
 - High energy resolution : 0.5% (FWHM) @2.5MeV
 - gaseous xenon + electroluminescence
 - Large mass

- : **1ton** (ϕ 3×2.5m, 10atm)
- BG discrimination
- : pixel readout (15mm pitch)

- Similar idea as NEXT experiment
- We introduce a new idea for signal readout (ELCC)

EL readout idea: ELCC Electro Luminescence Collection Cell

• ELCC

- in the cell hole, electrons are collected and accelerated, then electroluminescence photons are generated
- photons are detected by MPPC(SiPM) in each cell
- Merit of ELCC
 - uniform response in wide area
 - rigid structure (--> large size)
 - anode electrode
 - PTFE insulator w/ holes(\u00f64mm)
 - mesh electrode
 - MPPC photon detector array

What we want to observe

- $0\nu\beta\beta$ signal
 - energy: integrated FADC
 - track: waveforms (pixel readout TPC)

10atm Xe100% 15mm pitch 1μs sampling (~1mm)

Tracking strategy

- energy resolution 0.5% --> reject non-2.5MeV
- tracking --> reject α , γ (98%: compton)

10atm, Xe100%, 15mm pitch, 1µs sampling (~1mm)

電場シミュレーション

- ・ドリフト電場:再結合しないように
- EL電場:1kV以上、放電しないように

EL発光量の場所依存

EL発光量は閾値以上の電場で、電場強度と電子の移動距離に比例する。(図中の赤部)

 $dN_{ph}/dx = 70(E/p - 1.0)p$

 電子のドリフト開始位置を変えつつセル内の赤 部積分値の場所依存性を計算:σ=1.7%

- 電子数が100000個なので1.7/sqrt(100000)~0.005%

ジオメトリ・電場の最適化

- 電気力線の収集効率
 - 穴開口率依存性: 0.3以上の面積でOK。セルピッチ依 存性はない
 - 電場依存性:ドリフト電場に100V/cm/atmを課すとEL 電場には2.5kV/cm/atm以上が必要

Overall view

• Kyoto Univ. 3F (welcome!)

Prototype detector

- Detection volume
 - $-6*6*6cm^{3}$
 - 5.7g (4atm Xe)
- Sensor
 - WLS coated MPPC x64
 - VUV-PMT x2
- Electric field
 - EL: 2.4kV/cm/atm
 - drift: 50V/cm/atm

Event sample

- waveforms of MPPC and PMT
 - EL light & scintillation light are observed

MPPC: 65MHz 12bit 2Vpp

- Fiducial cut
 - veto region: outer 28 MPPCs

red: veto

- Time dependence correction
 - Impurities decrease EL gain
 - Gas circulation system is now under construction

• EL-gain correction

1000

- photon num of 30keV γ -ray for "each cell"
 - One MPPC(red) selection is too strict, so blue MPPCs are

- Hit volume correction
 - strong correlation was obtained

Energy resolution

- Four peaks are observed
- FWHMs are evaluated by Gaussian fitting

	Κα	κβ	escape	full
energy	29.8keV	33.6keV	92.3keV	122keV
photon #	6605	7516	18711	24710
FWHM	7.9%	8.7%	5.6%	4.7%

Energy resolution

検出器サイズup、解析improveにより、少し改善

	Κα	Κβ	escape	full
energy	29.8keV	33.6keV	92.3keV	122keV
photon #	6605	7516	18711	24710
FWHM	7.9%	8.7%	5.6%	4.7%

Energy [keV]	29.78	33.62	92.28	122.06
# of photon	4517.3	5169.5	13900.2	18445.0
FWHM	7.3%	7.0%	4.6%	4.0%

Energy resolution estimation at Q

- Estimated resolution is ~<1%(FWHM) @2.5MeV
 - あとちょっと
 - 放電対策してもう少し電圧を上げる

Summary

<u>AXEL project</u>

- $-0\nu\beta\beta$ search using high pressure xenon gas TPC with high energy resolution, large mass and tracking ability
- New readout idea : ELCC (electric field simulation is OK)
- <u>Prototype detector</u>
 - Energy resolution : ~1%(FWHM) at Q (many improvements are ongoing)
- <u>Future prospects</u>
 - We started making large size detector (エレキ・設計・ simulation)