TA実験地表検出器アレイによる 極高エネルギー宇宙線空気シャワー中の ミューオン数の解析

Ryuji Takeishi ICRR 2016.10.30 YMAP meeting

Outline

- ・ 最高エネルギー宇宙線
- TA実験概要
- ・TA実験の最近の成果
- ・ ミューオン過剰問題
- ・TA地表検出器を用いたミューオンの研究

- スペクトルから発生源の天体の情報(発生源からの伝搬・発生源での加速機構)が得られる
- 発生源の候補はGRB, AGN等がある
- 宇宙背景放射の光子との相互作用 p+γ_{CMB}->N+π により、 10^{19.8} eV 以上のエネルギーではフラックスがカットオフ →発生源の天体への距離は <~250Mpc

最高エネルギー宇宙線の観測手法

シャワーサイズ:数km

- ・ 到来頻度が少ないため、
 一次宇宙線から発生する
 空気シャワーで観測する
- ・地表粒子検出器アレイ(SD):
 シャワー粒子の横方向分布 からエネルギー、到来方向を 観測

(24時間稼働)

大気蛍光望遠鏡(FD):
 空気シャワーの縦方向発達
 からエネルギー、組成を観測

(稼働時間は年間の10%だが、SDより 精度よくエネルギーが求まる)

テレスコープアレイ実験

・米国ユタ州デルタ

-39.30°N, 112.91°W, 標高1400m

2008年3月よりハイブリッド観測

Telescope Array collaboration

5か国・約120名の国際共同実験(日本・アメリカ・韓国・ロシア・ベルギー)

川田和正,阿部理彦D,池田大輔,石井孝明A,石森理愛B,伊藤裕貴C,井上直也D,今岡慧P,内堀幸夫E,有働 慈治「,大岡秀行,大木薫,大嶋晃敏d,大西宗博,大野木瞭太G,荻尾彰一G,奥田剛司H,小倉潤B,小澤俊介L, 小野勝臣^e, 垣本史雄f, 笠原克昌^l, 門多顕司^J, 亀井啓太^p, 河合秀幸^k, 川上三郎^G, 川名進吾^D, 岸上翔一^G, 北村星爾^B,北村雄基^B,木戸英治,小西翔吾^G,斉藤公紀,齊藤保典^C,榊直人,佐川宏行,佐久間康二^B,櫻井 信之^G, 佐原涼介^G, 芝田達伸^R, 下平英明, 申興秀, 須澤拓光^D, 高木芳紀^G, 高橋優一^G, 高村茉衣^O, 瀧田正 人,武石隆治,武多昭道,竹田成宏,田中公一^M,田中秀樹^G,田中真伸^R,多米田裕一郎^F,千川道幸^N,千葉 順成⁰, 辻本まい⁰, 堤一樹^B, 常定芳基^G, 得能久生, 冨田孝幸^c, 永澤啓介^D, 長滝重博^C, 中村亨^P, 西本義樹 G,野里明香N,野中敏幸,林幹樹C,林嘉夫G,林田直明F,日比野欣也F,福島正己,藤井俊博,本田建A,松平, 知也^P, 松山利夫^G, K. Martens^Q, 屋代健太^O, 山岡広^R, 山崎勝也^L, 吉井尚^S, 吉田滋^K, 和知慎吾^G, R. U. Abbasi^T, T. Abu-Zayyad^T, M. Allen^T, R. Anderson^T, E. Barcikowski^T, J. W. Belz^T, D. R. Bergman^T, S. A. Blake^T, R. Cady^T, M. J. Chae^Y, B. G. Cheon^U, W. R. Cho^V, W. Hanlon^T, D. Ivanov^T, C. C. H. Jui^T, O. Kalashev^X, H. B. Kim^U, J. H. Kim^T, J. H. Kim^a, V. Kuzmin^X, Y. J. Kwon^V, J. Lan^T, S. I. Lim^Y, J. P. Lundquist^T, J. N. Matthews^T, I. Myers^T, I. H. Park^b, M. S. Pshirkov^Z, D. C. Rodriguez^T, G. Rubtsov^X, D. Ryu^a, L. M. Scott^w, P. D. Shah^T, B. K. Shin^U, J. D. Smith^T, P. Sokolsky^T, R. W. Springer^T, B. T. Stokes^T, S. R. Stratton^{T, W}, T. A. Stroman^T, S. B. Thomas^T, G. B. Thomson^T, P. Tinyakov^{X, Z}, I. Tkachev^X, S. Troitsky^X, F. Urban^z, G. Vasiloff^T, T. Wong^T, J. Yang^Y, R. Zollinger^T, Z. Zundel^T

東大宇宙線研, 山梨大工^A, 東工大理工^B, 理研^C, 埼玉大理^D, 放医研^E, 神奈川大工^F, 大阪市大 理^G, 立命館大理工^H, 早大理工^I, 東京都市大工^J, 千葉大理^K, 東大地震研^L, 広島市大情報^M, 近大理工^N, 東理大理工^O, 高知大理^P, 東大カブリ数物^Q, 高工研^R, 愛媛大^S, Univ. of Utah^T, Hanyang Univ.^U, Yonsei Univ.^V, Rutgers Univ.^W, INR^X, Ewha Womans Univ.^Y, Univ. Libre de Bruxelles^Z, Ulsan Nat^II. Inst. of Sci. and Tech.^a, Sungkyunkwan Univ.^b, 信州大 工^c, 中部大工^d, 九大院理^e

TA エネルギースペクトル

8

7年間データによる宇宙線源の兆候

等方的な分布の場合に5.1σ以上の有 意度を得る偶然確率:3.7x10⁻⁴ (3.4σ)

TA実験による最高エネルギーで初めて高い有意度での異方性 →宇宙線源の兆候?

組成

空気シャワーの最大発達深さ(X_{max})を組成の指標に用いる

TAではMD, BR, LRという3台のFDに対して、 複数の解析手法を行うことで系統誤差を理解する

proton

iron

軽い組成ほど

深く発達

TA観測 現状のまとめ

- 最高エネルギーでのスペクトルのカットオフを確認
- ・到来方向の異方性のホットスポットの兆候(>3σ)
- スペクトル・X_{max}は陽子組成(または軽元素)を示す 観測結果
- ホットスポットの確証を得るため、 拡張計画が進行中

11

μ excess issue

- UHECRは加速器で未到達のエネルギー領域であり、
 MCのハドロン反応モデルは衝突断面積、発生多重度などに
 低エネルギーからの外挿値を用いている
- 空気シャワー粒子には電子・γ・ミューオンなどが含まれる
 ミューオン数は一次宇宙線の組成に依存
 ミューオン数のMCによる期待値は、
 計算で用いるハドロンモデルにも依存

・ミューオン数の観測値とMCの期待値との 比較はモデルの制限に有用

μ excess issue

Auger実験におけるミューオン過剰

Auger実験:

南米における極高エネルギー宇宙線の 観測実験

SDで測定した宇宙線空気シャワー 中のミューオン数 N_µ において N_µ^{data} ~ 1.8N_µ^{MC} (MC: proton, QGSJETII-03 model)

MCの計算モデルの期待値が 観測値と合わず、空気シャワー解析の 不定性をもたらしている

Motivation of μ study

TA SD での空気シャワー中のミューオン数を解析する

- ・一次宇宙線の組成は陽子と仮定
- ・ミューオン過剰が起きているか調べる

TA SD 信号のほとんどは空気シャワー中の電磁成分が由来 ミューオン数の解析には、独自の手法が必要

- ・信号中の空気シャワーのミューオンの純度が高い TA SD の選別条件を調べる
- ・その条件で data・MC の到来粒子数の違いを理解する

Lateral distribution in each particle types

30° < θ < 45°, 150° < |Φ| < 180° 2000m < R < 4000m に位置する SDを解析する

15

μ 純度 = 空気シャワーからの到来粒子数 + バックグラウンド

Results

- ・異なるハドロンモデルを用いたdata/MC比較
- ・複数のモデルにおいて、dataはMCより大きい

$(\theta, \Phi) - \mu$ purity comparison

(θ, Φ) 条件を変えた場合のµ純度と data/MC 比の相関

Summary

<u>TA実験</u>

- 最高エネルギーでのスペクトルのカットオフを確認
- ・ 到来方向の異方性のホットスポットの兆候(>3σ)
- スペクトル・X_{max}は陽子組成(または軽元素)を示す観測結果

<u>空気シャワー中のミューオン数の解析</u>

- ミューオン純度が高い条件で、TA SD の空気シャワーからの 到来粒子数の観測量はMCで期待される数より大きい µ purity expected from MC = ~65 % の条件に置いて Data/MC ratio: 1.88 – 0.08 + 0.08 (stat.)
- ミューオン純度が高い条件での横方向分布の形は data と MC で異なり、軸からの距離が大きいと data/MC 比が大きい 傾向がある