

Large Hadron Collider forward (LHCf) 実験の概要とこれまでの測定結果

牧野友耶 名古屋大学 CR研 YMAP若手研究会, ICRR

- ・UHECRs観測とハドロン相互作用モデル起因の不定性
- Large Hadron Collider forward (LHCf) 実験
- ・これまでの測定結果(p-p/p-Pb, √s=900 GeV 7 TeV)
- ·新型検出器開発
- ・13 TeV測定とPreliminary results

Large Hadron Collider forward (LHCf) 実験の概要とこれまでの測定結果

牧野友耶 名古屋大学 CR研 YMAP若手研究会, ICRR

UHECRとハドロン相互作用モデルの問題

- TAx4, Auger primeによりさらに高統計が期待
- ・相互作用モデル起因の不定性が化学組成決定のボトルネック

Contributions from accelerator experiments

相互作用モデルの加速器実験による検証

- ・空気シャワー発達に関連するのは、エネルギー流量の大きい(超)前方領域
- 前方での粒子生成を測定し、相互作用モデルの予測と比較する

LHCによる成果: post-LHC models

The Large Hadron Collider forward (LHCf) experiment

The LHCf collaboration

The LHCf collaboration

Photon energy spectra @ $\sqrt{s} = 7 \text{TeV}$

- No model can reproduce LHCf spectra
 - but data points are among model predictions

```
 \int_{0}^{6} \int_{0}^{500 \ 1000 \ 1500 \ 2000 \ 2500 \ 3000 \ 3500 \ Energy [GeV]} \int_{0}^{6} \int_{0}^{500 \ 1000 \ 1500 \ 2000 \ 2500 \ 3000 \ 3500 \ Energy [GeV]} \int_{0}^{6} \int_{0}^{500 \ 1000 \ 1500 \ 2000 \ 2500 \ 3000 \ 3500 \ Energy [GeV]} \int_{0}^{6} \int_{0}^{500 \ 1000 \ 1500 \ 2000 \ 2500 \ 3000 \ 3500 \ Energy [GeV]} \int_{0}^{6} \int_{0}^{500 \ 1000 \ 1500 \ 2000 \ 2500 \ 3000 \ 3500 \ Energy [GeV]} \int_{0}^{6} \int_{0}^{500 \ 1000 \ 1500 \ 2000 \ 2500 \ 3000 \ 3500 \ Energy [GeV]} \int_{0}^{6} \int_{0}^{500 \ 1000 \ 1500 \ 2000 \ 2500 \ 3000 \ 3500 \ Energy [GeV]} \int_{0}^{6} \int_{0}^{500 \ 1000 \ 1500 \ 2000 \ 2500 \ 3000 \ 3500 \ Energy [GeV]} \int_{0}^{6} \int_{0}^{500 \ 1000 \ 1500 \ 2000 \ 2500 \ 3000 \ 3500 \ Energy [GeV]} \int_{0}^{6} \int_{0}^{500 \ 1000 \ 1500 \ 2000 \ 2500 \ 3000 \ 3500 \ Energy [GeV]} \int_{0}^{6} \int_{0}^{500 \ 1000 \ 1500 \ 2000 \ 2500 \ 3000 \ 3500 \ Energy [GeV]} \int_{0}^{6} \int_{0
```


- Neutron production may be relevant to muon production
 - Could be a key for muon problem
- EPOS 1.99, QGSJETII-03, SIBYLL 2.1 were not able to reproduce measured spectra

Publications

		Proton equivalent energy in lab (eV)	Gamma	Neutron	π ⁰
	Detector performance (old)	-	NIM A, 671, 129 (2012)	JINST 9 P030016 (2014)	-
	p+p √s = 900GeV	4.3x10 ¹⁴	Phys. Lett. B 715 298 (2012)		-
Former detector	p+p √s = 7TeV	2.6x10 ¹⁶	Phys. Lett. B 703, 128 (2011)	Phys. Lett. B 750 (2015) 360366	Phys. Rev. D 86, 092001 (2012)
	p+p √s = 2.76 TeV	4.1x10 ¹⁵			+ Phys. Rev. C 89, 065029 (2014) +
	p+Pb √s = 5.02 TeV	1.4x10 ¹⁶			Phys. Rev. D 94 032007 (2016)
Upgraded detector	Detector performance (new)	-	to be submitted (JINST)		_
	p+p √s = 13 TeV	10 ¹⁷	Analysis completed, paper writing	Next target	

New rad-hard LHCf detectors for $\sqrt{s}=13$ TeV

LHCf検出器の設置場所はLHCの中でも放射線環境が過酷なところ。 特に13 TeV測定では30 Gy/nb⁻¹に達し、プラシン等では正確な測定が無理 カロリメータと位置検出器SciFiで使用していた、プラシンをGd₂SiO₅(GSO)に変更

Sampling layer with GSO

GSO-bar hodoscope X-Y井桁状に並べた1mm pitchのGSOシンチ レータからなるシャワー位置検出器

GOLIATION CONTRACTOR OF CONTACTOR OF CONTRACTOR OF CONTACTOR OF CONTA

- ・2012/2014/2015の3回実施
- 100-250 GeV electron/muon, 200-350 GeV protonを使用
 - ・√s=13 TeVで測定するのは 200 < E < 6500 GeV
- 検出器のcalibration & performance check

Installation (Nov. 2014)

ATLAS (含衝突点)がある方向

the

ビームパイプ

LHCf検出器

中性子のダンパー (ここでビームパイプが2本に別れる)

34

"LHCf dedicated run" in p-p \sqrt{s} =13TeV, 2015

LHCf dedicated run

- Very-low luminosity special runs for LHCf
- 3 days for all physics program!!
 - No mistake is allowed...

LHCf control room ("barrack")

13 TeV run, event display, π0 candidate

13 TeV run, event display, π0 candidate

plots from 13TeV data...

Energy scale monitoring during the operation : pi0 mass

LHCf photon spectra @ $\sqrt{s}=13$ TeV

- ・DPMJET3, SIBYLL2.1などpre-LHCのモデルは測定値との乖離が激しい
- ・post-LHCのモデル(QGSJETII-04, EPOS-LHC)が測定値を良く再現

pp $\sqrt{s}=13$ TeV, Photon energy flow measurement

まとめ

- Large Hadron Collider (LHCf) experiment
 - ・LHCの超前方(η>8.4)でハドロン散乱で生成される中性粒子を測定
 - ・ガンマ、パイゼロ、中性子
 - 各ハドロン相互作用モデルの予測を比較、検証
- √s=0.9-13TeV / p-p, p-Pbでこれまでに測定を完了
 - ・特に√s=13TeVでは放射線耐性を向上させた新型検出器で測定
 - ・これから
 - ・11月にLHCでp-Pb ~√s=8 TeV
 - ・来年5月 RHICで√s=510GeVで測定(RHICf)
- ・LHCfのデータを完全に再現するモデルはないものの、post-LHCと呼 ばれるモデル群の方が再現性は確実によい
- •名古屋のLHCfグループはYMAPの活動に興味があります!