JGW-G2314819

大型低温重力波望遠鏡 KAGRAの現状

Takashi Uchiyama on behalf of the KAGRA Collaboration Institute for Cosmic Ray Research, UTokyo, Japan

ICRR共同利用研究成果発表会2023

Current Observable GW bands

Currently only high-frequency GWs have been directly detected by LIGO and Virgo.

The Gravitational Wave Spectrum

Figure: M Evans

Next generation GWDs and space GWDs will expand the window of GWs

Interferometric GW detector

Fabry-Perot Michelson Interferometers with recycling technique

Global network of GW detectors

Improvement of confidence in direction, duty cycle, sky coverage, and so on.

Past observing run

T. Sawada, JGW-G2214421-v7

Past observing run

T. Sawada, JGW-G2214421-v7

Plan of next observing run O4

Planned from 24 May 2023.

18 months for observing.

https://observing.docs.ligo.org/plan/ 7

KAGRA

SuperKamiokande

Kamland

KMASS

CLIO

KAGRA site

90cm snow in one night

KAGRA entrance

KAGRA entrance in winter season

KAGRA site around BS

Key features of KAGRA

Suspensions

- Cryogenic test masses
- 3 km arm cavities
- RSE with power recycling

Type-A

History of KAGRA

T. Sawada, JGW-G2214421-v7

13

2010 Funded by MEXT Japan
2012 Started Construction
2016 Test Operation @ room temp. (iKAGRA)
2018 Cryogenic Test Operation (bKAGRA)
2019/8 FPMI

2019/10 Joined Research MoA with LIGO-Virgo

2019/11 FPMI 2019/12 FPMI

2020/2 PRFPMI

2020/3 PRFPMI

2020/3 Joined O3 PRFPMI @ room temp. 2020/4 Observation O3GK

FPMI = Fabry-Perot Michelson Interferometer PRFPMI = Power Recycling Fabry-Perot Michelson Interferometer

We identified dominant noise sources in all observation band

Suspension update for low frequency

Added new optical levers for better angular sensing.

T. Yokozawa, JGW-G2214400-v3

2022/11/07

Conclusion and Future Work

Conclusion

With my newly designed control, the control noise was reduced by $2\sim3$ orders of magnitude while maintaining stable operation of the interferometer for a long time

M. Tamaki, JGW-G2314804-v4

Baffle installation for middle frequency

Installed many baffles around central area mirrors

High power laser for high frequencies

Installed new high power laser with better intensity noise.

Updates of vacuum and cryogenics

Achievement of cryogenic mirrors are important for better sensitivity.

We want to reduce thermal noise by cooling the mirror, but..

Problems occurred in the preparations for O3

- Additional vacuum pumps
 - 12 more ion-pumps
 - 10 more turbo molecular pumps
- Better vacuum
- Avoid molecular adsorption on mirrors during cooling
- Defrosting heaters

Expected sensitivity toward O4

We aimed to achieve 1 - 3 Mpc at the beginning of O4 (O4a) and 3 - 10 Mpc at the end of O4 (O4b).

To achieve them, we plan to have relatively longer commissioning break between O4a and O4b compared with LIGO and Virgo.

KAGRA関係共同利用研究

	研究課題	査定額
G1	大型低温重力波望遠鏡に関する研究 (XII)	¥300,000
G3	高性能極低温鏡制御系の開発	¥500,000
G4	大型低温重力波望遠鏡(KAGRA)の低温懸架系の研究	¥200,000
G5	KAGRA実験に向けた伝導冷却の方法の高度化	¥300,000
G6	KAGRAにおけるレーザー強度安定化のためのR&D	¥400,000
G7	重力波望遠鏡KAGRAの測定感度向上 に資する雑音低減および極微小散乱光計測技術の開発III	¥450,000
G9	KAGRAにおける環境由来のノイズ削減に関する研究	¥200,000
G10	KAGRA検出器における注入試験による環境雑音評価手法の研究	¥150,000
G11	機械学習・深層学習を用いたノイズ 特徴の分析と干渉計診断への応用 (II)	¥350,000
G12	重力波検出の信頼性向上のための突発性雑音データ解析システムの構築	¥200,000
G13	重力波望遠鏡における電磁波散乱・ 伝搬シミュレーション X	¥100,000
G14	高性能サファイア鏡懸架系の開発	¥250,000
G15	KAGRAの制御と自動運転	¥300,000
G16	KAGRAデータ転送・保管系の構築 (8)	¥400,000
G17	KAGRAデータを低遅延国際重力波探 索網へ組み込むための共同研究推進(2)	¥200,000
G18	重力波探索のための望遠鏡診断システムの構築(II)	¥250,000
G19	KAGRAを用いたモデル化されていない突発性重力波探査	¥200,000
G22	KAGRA望遠鏡の高感度化のための雑 音源同定ツール開発	¥200,000
G23	熱雑音を用いた新たな重力波望遠鏡 の較正手段の開発	¥200,000
全19課題		¥5,150,000

Published papers in this Year

- <u>KAGRA Collaboration First joint observation by the underground gravitational-wave</u> detector, KAGRA with GEO600
- <u>Unsupervised learning architecture for classifying the transient noise of interferometric gravitational-wave detectors</u>
- Performance of the KAGRA detector during the first joint observation with GEO 600
 (O3GK)
- <u>Response of the underground environment of the KAGRA observatory against the</u> <u>air pressure disturbance from the Tonga volcano eruption on January 15th, 2022</u>
- <u>A laser interferometer accelerometer for vibration sensitive cryogenic experiments</u>
- <u>Vibration analysis of KAGRA cryostat at cryogenic temperature</u>
- Input optics systems of the KAGRA detector during O3GK
- Estimation of Newtonian noise from KAGRA cooling system
- •

Summary

- LIGO-Virgo-KAGRA Collaboration has been started.
- KAGRA couldn't join O3 observing run with LV due to COVID19 pandemic but had an observing run, O3GK, with GEO600 in April, 2020.
- Next observing run, O4, planned to start on 24 May 2023.
- KAGRA will join O4 with better sensitivity than O3GK
- Commissioning is ongoing.