大気ニュートリノフラックス の精密計算_{代表: 伊藤 (名大)}

佐藤和史 21 Feb. 2023 @ 共同利用研究成果発表会

Honda フラックス計算 • 大気v: SK/HKでのシグナル事象&主要BG事象

低エネルギー(<~100 GeV)での大気v 計算

- Honda, Bartol, FLUKA
- 3Dモンテカルロ計算
 - 1次宇宙線が作る大気シャワーをシ ミュレーションする

従来のHondaフラックスキャリブレーション → 大気µ

大気µの観測結果を再現するように、生成される
 ハドロン粒子のエネルギースペクトルを調整

大きな不定性

- E < 1 GeV
 - 低Eのµのエネルギー損失

→ conservativeな不定性見積

• E > 10 GeV

加速器データによるチューニング

- v生成には複数のハドロン反応が関与
- → それぞれの 微分断面積d³の/dp³ がv数計算結果に影響

- 上記の反応チェーンの各反応点に対してそれぞれ重みを計算
- vにはそれらの積 $\prod_i w_i$ を最終的な重みとしてかける

使用したビームデータ

2000年以降の proton ビームデータを中心に使用

• HARP, E910, NA61, NA49, NA56

	Beam momentum $[GeV/c]$										
k_{out}	3	5	6.4	8	12	12.3	17.5	31	158	400	450
π^{\pm}	Be, C, Al	Be, C, Al	Be	Be, C, Al	Be, C, Al	Be	Be	С	С	Be	Be
	[?]	[?]	[8]	[?]	[?]	[8]	[8]	[9]	[10]	[11]	[11]
K^{\pm}	_	_	_	_	_	—	_	С	—	Be	Be
								[9]		[11]	[11]
p	Be, C, Al	Be, C, Al		Be, C, Al	Be, C, Al	—	_	С	С	Be	Be
	[7]	[7]		[7]	[7]			[9]	[10]	[11]	[11]

● 全生成断面積 σ_{prod}, は Honda MC に入っているもの をそのまま使用

加速器データチューニングを取り入れたフラックス

→ 5--10% 小さい値

 Honda MCで使用しているdpmJet3 のmultiplicityがデータより 大きい

- 高 頃域 (>~5GeV): フィット関数の不完全 ざ (reduced x²~2)
 - simultaneously fit NA61, NA49, and NA56 data (31~450 GeV) $\frac{10}{8}$

他グループとの比較

Bartolグループも同様に加速器データチューニングを行なっている 2022年11月、ワークショップ(WANP2022)を開催し比較と議論を行なっ た。(<u>https://www-kam2.icrr.u-tokyo.ac.jp/event/14/</u>)

- "Tuned" Honda flux が10 % ほど低い
 - 違いを生む要因について議論を継続

まとめ

- Hondaフラックスを **加速器データ**を使ってチューニング
- チューニングによりフラックスは **5--10%** 小さくなると予想
- **系統誤差**を評価
 - 従来のチューニング方法が不得意としていた<1GeV領域の不
 定性を改善
- Bartol グループとの比較を行なった
 - チューニング後のHonda フラックスが 10% ほど低い
 - 違いを生む要因を議論

今後の展望

- 加速器チューニングについての論文を投稿
- ビーム実験へフィードバック