B04 神岡地下観測所における 中性子フラックス測定 査定金額:20万円 使途:旅費、修繕費

南野彰宏(横国大) for 中性子測定コンソーシアム

2022年度ICRR共同利用研究成果発表会 2023年2月22日

目次

- ・地下実験室における環境中性子
- ・³He比例計数管による測定
- •液体シンチレーター検出器による測定
- ・まとめ

地下実験室のよい点

- 宇宙線μが地上の10⁻⁵倍以下
 - 宇宙線μの核破砕による放射性核種の生成が抑えられる。
 - 宇宙線μによる核破砕起源の環境中性子が少ない。

地下実験室における環境中性子

- 地下宇宙素粒子実験のバックグランド源
 - 標的物質との弾性散乱→宇宙暗黒物質直接探索
 - 標的物質との非弾性散乱→ニュートリノを伴わない二重β崩壊探索
- 地下実験室での主な環境中性子発生源
 - ・岩盤や検出器材料とそれに含まれるウラン系列、トリウム系列の崩壊 で発生するα線との(α,n)反応。

地下実験室の環境中性子測定

- 中性子測定コンソーシアム
 - ・2015年に若手を中心に立ち上げ。
 - 複数の実験グループで協力

・本研究では2種類の検出器を開発

検出器	標的原子核	測定に使う反応	感度領域
³ He比例計数管	³ He	(n,p)反応	熱中性子
有機液体シンチレーター	H(主に)	弾性散乱	高速中性子

熱中性子: 運動エネルギーが0.5 eV以下 高速中性子: 運動エネルギーが1 MeV以上

³He比例計数管

- 3 He + n \rightarrow p + T + 0.765 MeV
- 熱中性子に高い感度
- 高速中性子は減速材(ポリエチレンなど)で減速後に測定。

³He比例係数管による地下環境中性子測定

•神岡地下実験室Lab-B、2021年7月~2023年1月

地下環境中性子測定:シミュレーション による見積もり

先行研究の手法 (K.Mizukoshi et al., PTEP (2018) 123C01.)

 中性子の発生: 岩盤中の(α,n)反応 → NeuCBOT*
 岩盤から実験室への中性子の輸送 → Geant4
 各中性子のスペクトラムに対する³He比例計数管の応答 → Geant4

岩盤中の 水素(質量比)	0%	3%
R _A (熱中性子)	3567	10792
R _B (高速中性子)	3980	2484
R_A/R_B	0.9	4.4

③ ³He比例計数管の応答

岩盤中の水が多い→熱中性子が多い

* TALYS(www.tendl.web.psci.ch)の計算結果を利用した (α,n)反応シミュレーター

地下環境中性子測定: 降水量との比較

- 長期観測を継続し、複数年に渡りカウントレートを調査する。
- 中性子線源を用いた³He比例計数管の較正を定期的に行う。
- エネルギースペクトルを直接測定できる液体シンチレータ検出器と同時観測を行う。
- 測定を行ったLab-B付近のトンネル排水量やラドン濃度との相関を調べる。

3.5%

4.7

* Saint-Gobain社製 BC501A

液体シンチレータ*検出器

- 中性子に反跳された陽子を検出。
- ・波形弁別によりγ線、電子は除
 去できるがα線は難しい。

²⁵²Cf中性子線源Run

中性子

 γ

3000

Slow/Tota

0.4

0.2

0

-0.2

1000

2000

液体シンチレータ検出器の低バックグラ ウンド化

ステンレス容器

α崩壊

226Ra

α

222Rn

226Ra

α崩壊

染み出し

218P0

222Rn

222Rn

α崩壊

α

ステンレス容器からの²²²Rnの染み出し

- ・ 電解複合研磨(ラドン検出器の技術*)
- 液体シンチレーター中の放射性核子

・超純水による液液抽出

早稲田大の純化システム

11

* J. of Phys. Conf. Series 469 (2013) 012007.

液体シンチレータ検出器のα線バックグ ランド

α線バックグランドを²¹⁴Bi-²¹⁴Po
 の遅延同時計測で評価

²¹⁴Poの半減期が短いためΔ+で強力に事象選択可

Bi-Po α線レートの時間変動

ICP-MSによる液体シンチレーター中RI測定@筑波大

液体シンチレー	·ター4.8 L中のRI量
---------	---------------

純化後4.8 L中の崩壊頻度

	²³² Thの質量 [pg]	²³⁸ Uの質量 [pg]		崩壊頻度 [mBq]	
純化前I	26.2 ± 0.1	0.0911 ± 0.0234	²³² Th	$(2.42 \pm 0.03) \times 10^{-5}$	
純化前2	27.7 ± 0.2	0.119 ± 0.023	²³⁸ U	$(1.74 \pm 0.16) \times 10^{-6}$	
純化前3	24.1 ± 0.4	0.216 ± 0.034		£	
純化前(平均)	26.0 ± 0.2	0.143 ± 0.016	²¹⁴ Po	0.784	
純化後I	6.04 ± 0.06	0.214 ± 0.019	(遮蔽体中)	0.764	
純化後2	5.56 ± 0.24	0.0594 ± 0.0308			
純化後3	6.32 ± 0.12	0.143 ± 0.012	この測定か	この測定から分かったこと:	
純化後(平均)	5.97 ± 0.09	0.140 ± 0.013	液体シンチレーター中のRIが 主なバックグランドである場合 U系列の放射平衡は崩れている。		
	₽	₽			
	純化で77%減少	純化で変化なし			

液体シンチレータ検出器のバックグランドの低減に向けて

期待される環境中性子スペクトラムと α線バックグラウンド(0.8mBq)の比較

・低バックグランド化で | 桁低減

- ステンレス容器の表面処理
- 液体シンチレータの純化
- 窒素バブリングによる²²²Rnの低減
- ・解析で更に | 桁低減
 - γ線のパイルアップによる偽事象
 - ・遅い遅延同時計測:²²²Rn-²¹⁸Poの *α*とα (²¹⁸Poの半減期 3.1分)

まとめと今後の予定

- 神岡地下環境中性子測定
 - ³He比例計数管による2021年7月~2023年1月の測定と降水量を比較した ところ、有意な相関はなかった。
 - •液体シンチレーター検出器のバックグランドを2桁低減する必要がある。
- 今後の予定
 - ³He比例計数管の長期測定を継続する。
 - 液体シンチレーター検出器のバックグランドを低バックグランド化で
 1桁、解析で1桁低減する。
 - ³He比例計数管と液体シンチレーター検出器の同時測定を行う。

バックアップ

地下環境中性子測定:降水量との比較

