F23:新しい宇宙線空気シャワー シミュレーションコードの開発 (COSMOSの開発と将来の展開)

塔隆志 (東大ICRR)

令和4年度東京大学宇宙線研共同利用研究成果発表会

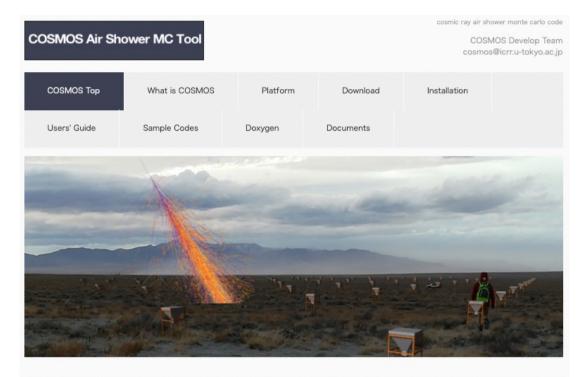
査定額と共同研究者

- 査定額 10万円(旅費)
 - 月例実務者会議(ハイブリッド)
 - ICRR Report 「電磁相互作用の基礎とその応用一宇宙線現象の解釈のために一」出版
- 大型計算機利用
- ・ 共同研究者(所属は申請時)

常定芳基(大阪市大)、毛受弘彰(名大)、櫻井信之(徳島大)、

吉越貴紀、大石理子、野中敏幸、武多昭道、西山竜一、釜江常好(東大)、木戸英治、 榊直人(理研)、笠原克昌(芝工大)、藤井俊博(京大)、芝田達伸、板倉数記(KEK)、 大嶋晃敏、山崎勝也(中部大)、日比野欣也、有働慈治(神大)、

多米田裕一郎(大阪電通大)、奥田剛司(立命館大)、奈良寧(国際教養大)、


土屋晴文(原子力機構)

活動内容 (COSMOS開発)

- 2013年末、有志による「モンテカルロシミュレーション研究会」として発足 (2014年から共同利用)
- Gfortran化、cmake compileの実現
- ・ 共同研究者で分担し、多様な環境でのコンパイルと動作試験
 - マイナーアップデート (環境依存を多数発見)
 - Web page, manual, サンプルコード等の改良
- ・ 2021年に非気体媒質・非地球大気での計算可能なCOSMOS Xを公開
- CORSIKA WSでの講演
- 「空気シャワー観測による宇宙線の起源探索研究会」(シニア+学生セッション)を毎年開催
- 今年度(後述)
 - ニュートリノシャワー計算・NEUTとの連携議論
 - ICRR Report発行
 - COSMOS講習会開催(昨年度末)、今年度も3月に実施予定
 - 月例会議で Debug, etc…

COSMOS X公開

http://cosmos.icrr.u-tokyo.ac.jp/COSMOSweb/

COSMOS Top

Now brand-new version of COSMOS,COSMOS X, is available.Enjoy it. Your feedbacks are welcome.

......

For old COSMOS version <=8, please go to the original page.

Welcome to COSMOS, a cosmic-ray air shower MC simulataion code

COSMOS is...

COSMOS News

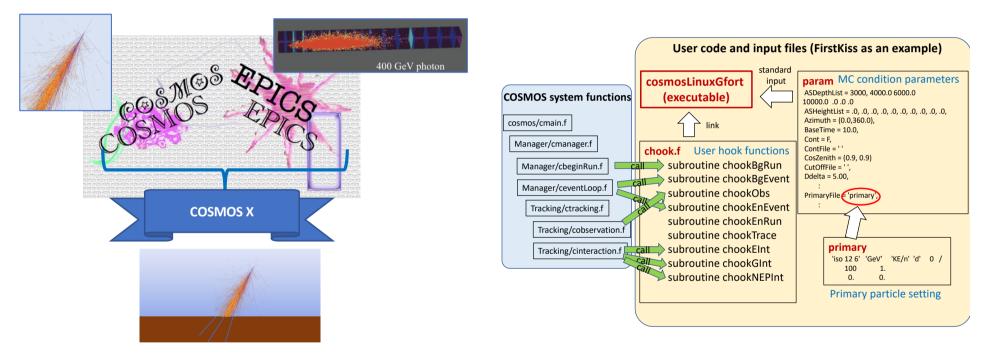
COSMOS X Manual

COSMOS X development team

November 18, 2021

Contents

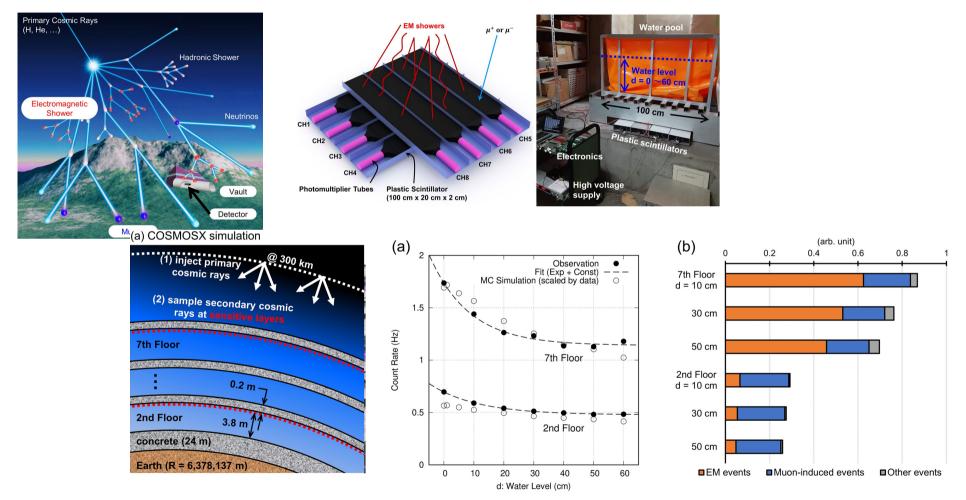
1	Wh	at is COSMOS X?	3					
	1.1	What can we do with COSMOS X?	3					
	1.2	Structure	3					
		1.2.1 General structure	4					
		1.2.2 Users' flexibility: 3 user control files	4					
	1.3	What we can not do (now)? \ldots \ldots \ldots \ldots \ldots \ldots \ldots	5					
2	Hov	How to use COSMOS X for the first time?						
	2.1	Environment	9					
	2.2	Download	9					
	2.3	Installation	9					
	2.4	Test program (First Kiss)	10					
			10					
		2.4.2 Track visualization	11					
			12					
3	Hov	v to edit the user control files?	13					
	3.1	primary file	13					
	3.2	param file	14					
	3.3	1	14					
4	Hov	v to optimize my simulation?	15					
	4.1		15					
	4.2	Thinning	15					
	4.3	8	15					
	4.4		15^{10}					
	4.5	8	$15 \\ 15$					
	4.6		$15 \\ 15$					


COSMOS Xの特徴

Proceedings paper : PoS(ICRC2021)431

COSMOS X as a general purpose air shower simulation tool

T. Sako,^a T. Fujii,^{b,c} K. Kasahara,^d H. Menjo,^e N. Sakaki, ^f N. Sakurai,^g A. Taketa,^h Y. Tamedaⁱ for the COSMOS X development team

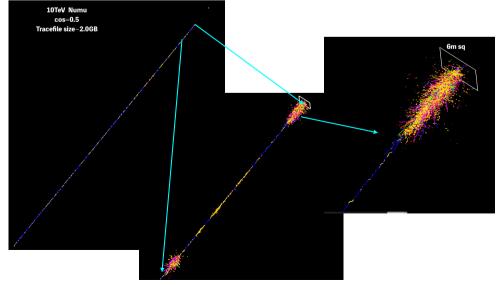

^a Institute for Cosmic Ray Research, the University of Tokyo, ^b Hakubi Center for Advanced Research, Kyoto University, ^c Graduate School of Science, Kyoto University, ^d Faculty of Systems Engineering and Science, Shibaura Institute of Technology, ^eInstitute for Space-Earth Environmental Research, Nagoya University, ^f Computational Astrophysics Laboratory, RIKEN, ^gGraduate School of Science, Osaka City University, ^bEarthquake Research Institute, University of Tokyo, ⁱOsaka Electro-Communication University, Department of Engineering Science

- ・ 笠原が開発した空気シャワーシミュレーションツールCOSMOSと検出器シミュレーション ツールEPICSを一体化したシミュレーションツール
- 地球大気だけでなく、土、水、コンクリートなどの物質、地球以外の星での計算が可能。
 物質分布は同心球殻であること。
- プロセスごとにユーザー定義関数が呼ばれることで、反応過程にアクセス可能(GEANT4の イメージ)。

COSMOS Xの応用

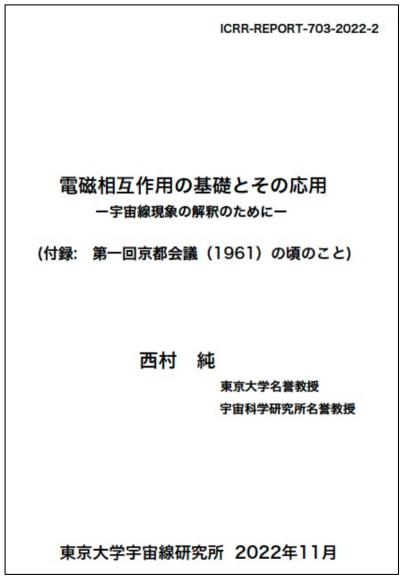
"Radiography using cosmic-ray electromagnetic showers and its application in hydrology," A. Taketa, R. Nishiyama, K. Yamamoto & M. Iguchi, Scientific reports (2022) 12:20395

- 二次宇宙線「電磁成分」の吸収で土中水分量を測定する cosmic electromagnetic particle (CEMP) radiography を提唱
- COSMOS X + GEANT4で実験室での測定を再現


ニュートリノ反応の導入

$\nu_{\mu}(30 GeV) + 0 \rightarrow \mu (10 GeV) + X$

- COSMOS Xは neutrino interaction modelは実 装していない
- 一般的なgenerator (GENIE, NuWRO, NEUT, Herwig...)の導入を検討
 => NEUTと将来の検討開始
- Step1:NEUTで計算した生成粒子群を COSMOS Xで任意のvertexに入射 右図:NEUTで計算したinteraction (CCDIS) をCOSMOS Xで氷中で追跡
- Step2 (将来) : NEUTとCOSMOS Xを連携



$$\nu_{\mu}(10TeV) + O \rightarrow \mu + X$$

西村先生テキスト

- 2015年の講義をテキスト化
- ICRR Reportとして出版・配布
- 宇宙線研HP「年次資料・報告書」からPDF DL可
- 印刷版も余裕があります。希望者はご 連絡ください。
- 水本好彦先生、笠原克昌先生、中村健 蔵先生、宇宙線研広報室には企画、編 集、出版にわたってご協力いただきま した。ありがとうございます。

COSMOS講習会と 第五回空気シャワー観測による 宇宙線の起源探索研究会

- 2022年3月22-23日 ハイブリッド開催
- https://indico.cern.ch/event/1118785/

第五回 空気シャワー観測による宇宙線の起源探索勉強会

■ 22 Mar 2022, 10:00 → 23 Mar 2022, 19:05 Asia/Tokyo

♥ TBD

Description

本勉強会は宇宙線研共同利用「Knee領域および最高エネルギー領域での宇宙線反応の実験的研究」と「新しい宇宙線空気シャワーシミュレーショ ンコード 開発」の一環として毎年実施しています。コロナの状況は不明確ではありますが、集まれる人は集まるという方針でハイブリット形式で 開催を予定しています。また今年度からは参加者を共同利用研究関係者に限定せずにオープンで開催したいと思います。 本年度は前年度と同じスタイルで2日間(1日目:若手セッション、2日目:全体セッション)で開催予定です。若手セッションの午前中に空気 シャワーシミュレーションコードCOSMOSの講習会を人数限定で開催することを予定しています。

今回の勉強会のトピックスは「銀河系内外のトランジション領域」としてこれにフォーカスした内容の講演があります。

Z00M接続

(1日日) https://u-tokyo-ac-jp.zoom.us/j/83030694514?pwd=SWFVWUIBL0sxRkdmRS9kOHFuWXpSdz09 (2日日) https://us02web.zoom.us/j/86112086502?pwd=ZEVNd2V3RUx3Qk5icnpMUjVqcnJVUT09

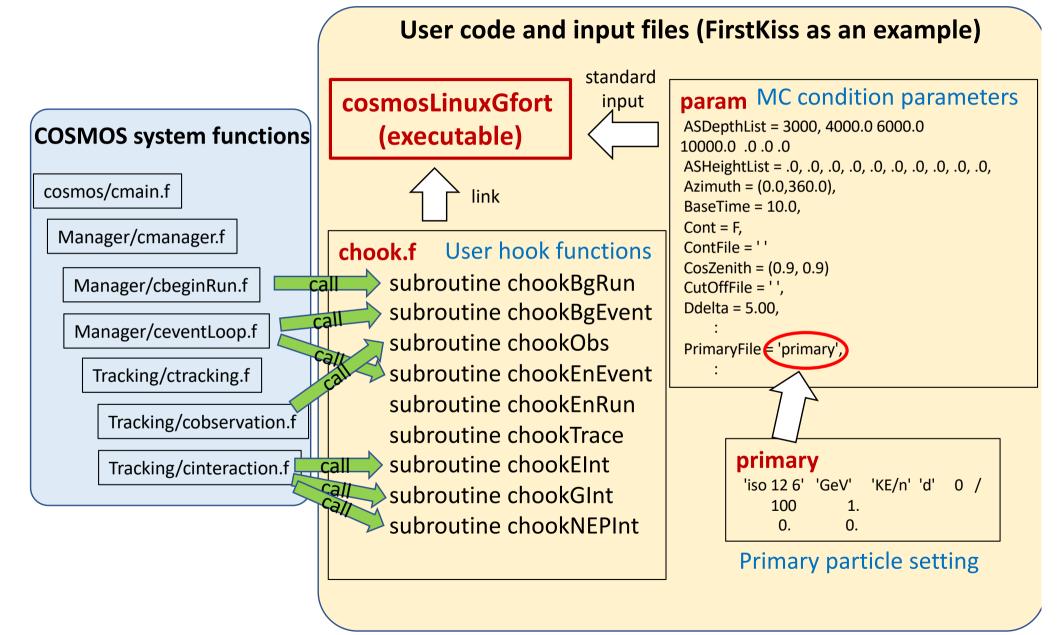
過去の勉強会のリンク 2017年 第1回 2018年 第2回 2019年 第3回 2021年 第4回

会場: ハイブリット (宇宙線研究所+ZOOM) (詳細情報の展開のため、参加登録をお願いします。)

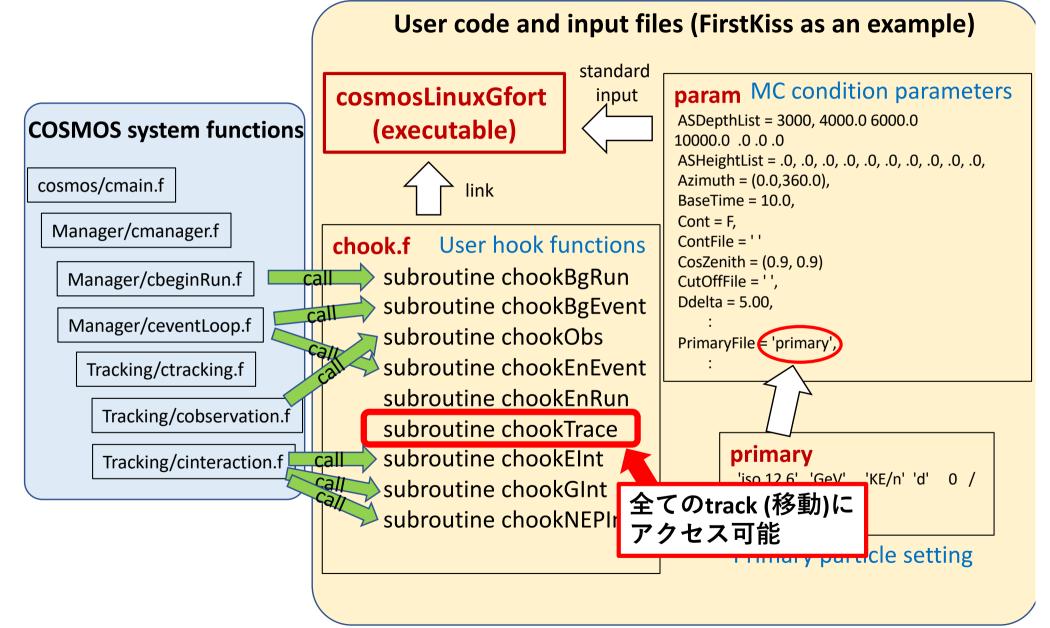
		二日目	
		一般セッション	
09:30 → 12:00	シニアセ	ッション: 2日目午前	
	09:30	應旨説明 Speaker: Hiroaki Menjo (Nagoya University (JP))	(3 5m
	09:35	銀河系内宇宙線と銀河系外宇宙線の遷移 Speaker: Yutaka Ohira (University of Tokyo) 区 AS2022_OhiraYuta	() 40m
	10:15	TA + TALE で考える系内系外トランジション Speaker: Keltaro Fujita (大阪市大) 220323AirShowerT	() 30m
	10:45	チベット実験による sub-PeV 領域でのガンマ線観測 Speaker: 崇志 佐古 (ICRR) ひ Tibet_SAKO.pdf	() 30m
	11:15	ALPACA実験と将来計画 Speaker: Kazumasa Kawata (ICRR) 译 MegaALPACA_Proj_	© 30m
12:00 → 13:00		ランチ	() 1h
13:00 → 19:05	シニアセ・	ッション: 2日目午後	
	13:00	IceCube実験 Speaker: Nobuhiro Shimizu (千葉大) 译 Airshower_worksh_	③ 30m
	13:30	IACTによるガンマ線観測と宇宙線加速 Speaker: Takayuki Saito (ICRR) Part IACT-Saito.pdf	() 30m
	14:00	日印共同宇宙線実験GRAPES-3について Speaker: Tatsumi Kol (Chubu University) 区 Kol/20220323.pdf	() 30m
	14:30	X線観測を用いたマイクロクエーサーSS433における粒子加速の研究 Speaker: Kazuho Kayama (Kyoto University) AirshowerWorkaho	© 30m
	15:00	Break	③ 20m
	15:20	Status of sFLASH - Measurement of air fluorescence yield from EM shower Speaker. Masaki Fukushima (ICRR)	© 30m
	15:50	LHCf/RHICfによるトランジションエネルギー領域の相互作用研究 Speaker: Hiroaki Menjo (ISEE, Nagoya Unix.) 20220323, AirSho_	() 30m
	16:20	FASERnuとLHCでのニュートリノ測定の将来展望 Speaker. Tomohiro Inada (Tsinghua University (CN), CERN, ICRR) 2022AirShower_in_	() 30m
	16:50	Discussion	© 30m

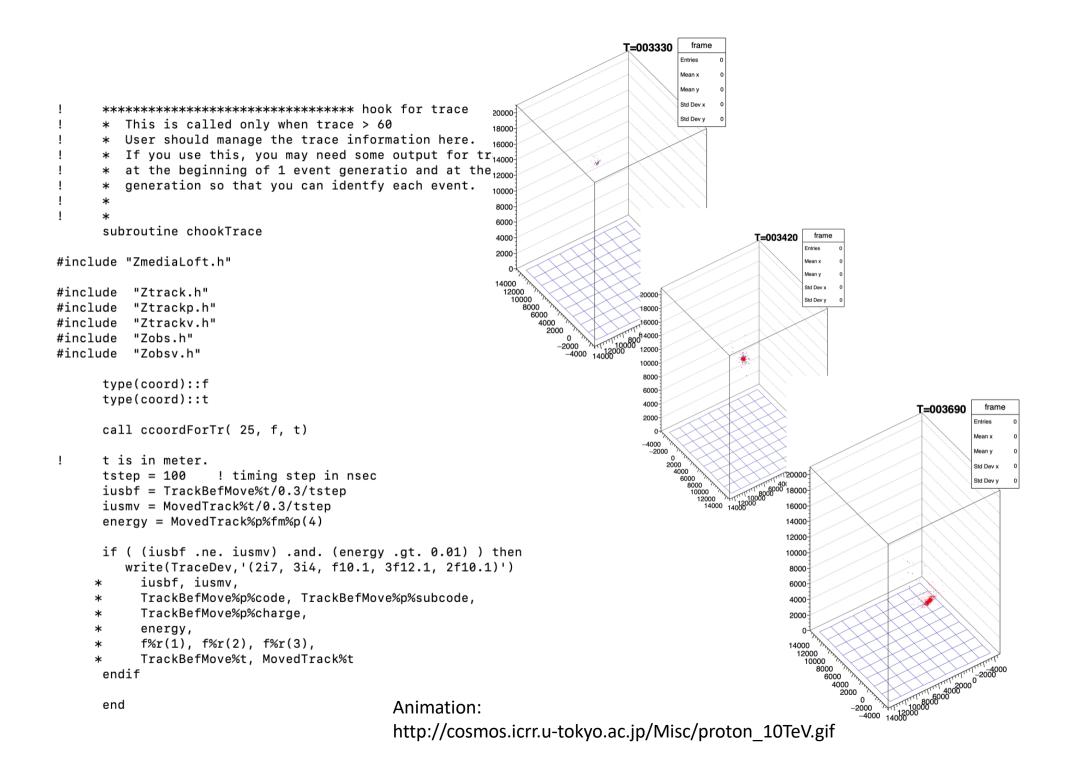
COSMOS講習会と 第六回空気シャワー観測による 宇宙線の起源探索研究会

- **2023年**3月27-29日(29日が講習会)
- ・ @名古屋大学+ハイブリッド (ICRC2023会場リハーサル)
- https://indico.cern.ch/event/1244851/
- 講習会は笠原による空気シャワーシ ミュレーション講義とCOSMOS Xの 実践演習

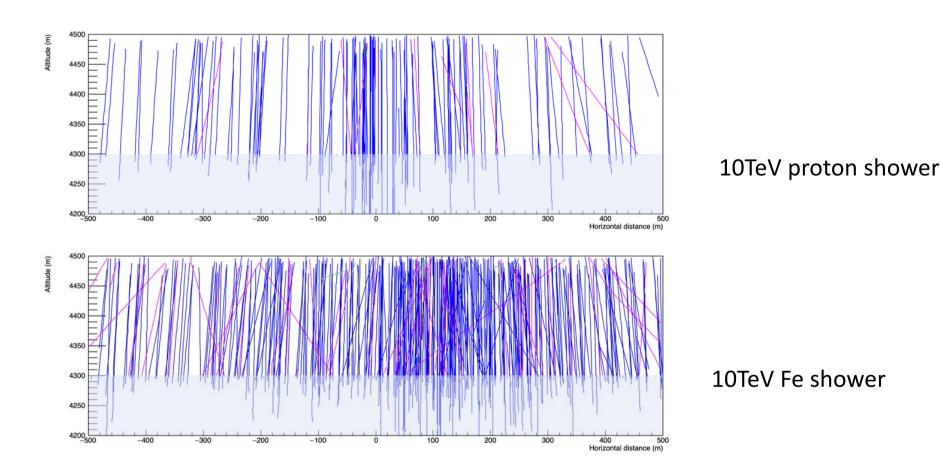

Description	
	本研究会は宇宙線研共同利用「Knee領域および最高エネルギー領域での宇宙線反応の実験的研究」と「新しい宇宙線空気シャワーシミュレーショ ンコード開発」の一環として毎年実施しています。今年は会場を名古屋大学に移しハイブリット形式で3月27日と28日の2日間、開催をしま す。各日で会場が異なるので注意してください。 本年度は、若手とシニアセッションで分けずに広く議論できるようにします。特に学生や若手研究者からの多くの講演、活発な議論を期待してい ます。
	また空気シャワーシミュレーションコードCOSMOSの講習会を3月29日に人数限定で開催します。この講習会では、COSMOSの初心者を対象と して、サンプルコードの実行ができるようになり、自分の希望する計算ができるようになるとっかかりを支援します。
	過去の勉強会のリンク 2017年 第1回 2018年 第2回 2019年 第3回 2021年 第4回 2022年 第5回
	会場: ハイブリット(名古屋大学+ZOOM)
	 1日目(27日):ES館6階 E635室 2日目(28日):豊田講堂メインホール 3日目(29日、COSMOS講習会):研究所共同館2号館、3階レクチャーホール(参加人数に応じて変更の可能性あり。) (詳細情報の展開のため、参加登録をお願いします。)
egistration	
	⑦ 研究会参加登録 ✓ Register

まとめ

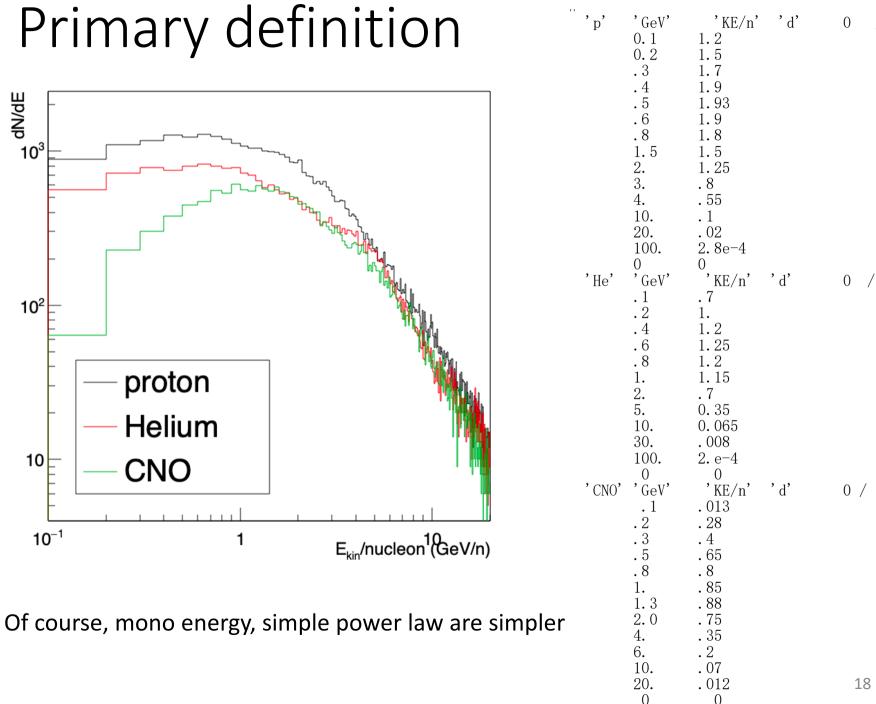

- COSMOS Xの開発を通した空気シャワーシミュレーションの研究を継続
- 地球物理への応用研究
- •ニュートリノ反応の導入
- 西村先生によるテキストをICRR reportとして発行
- COSMOS講習会、空気シャワー研究会を通した若 手、グループ間交流を推進


ご支援ありがとうございます。 初心者ユーザーのご意見歓迎。卒業研究等のテーマにもどうぞ。

COSMOS User Interface

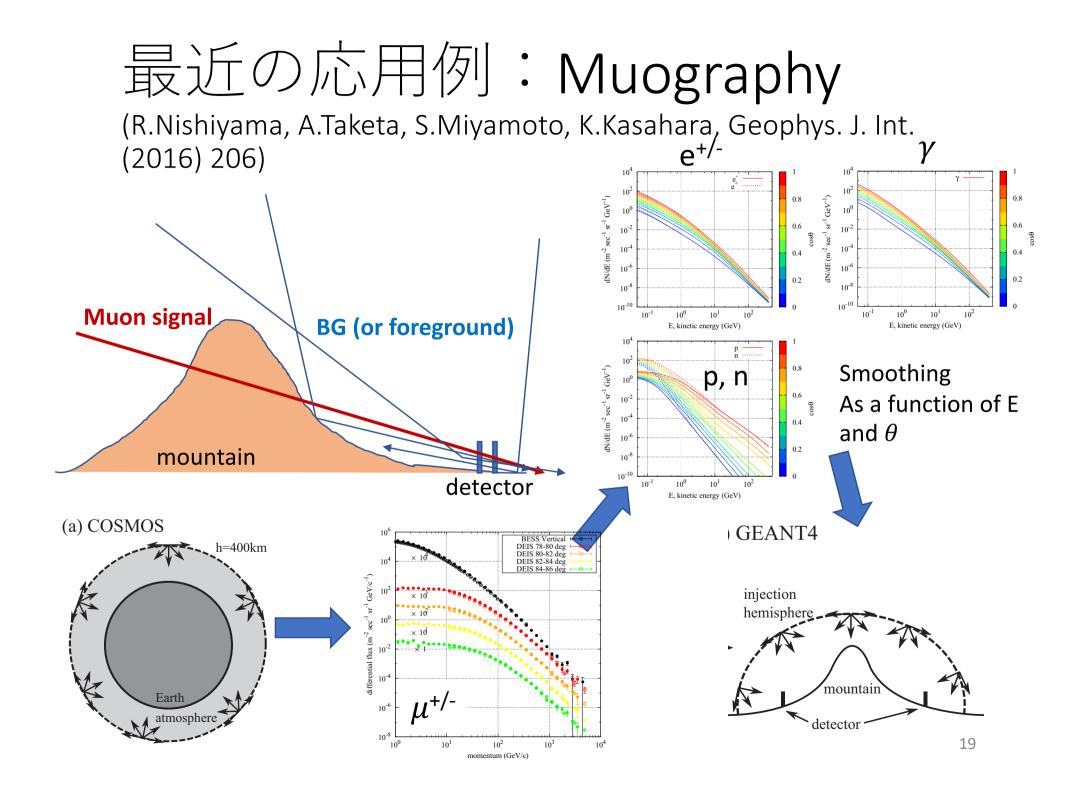


COSMOS User Interface



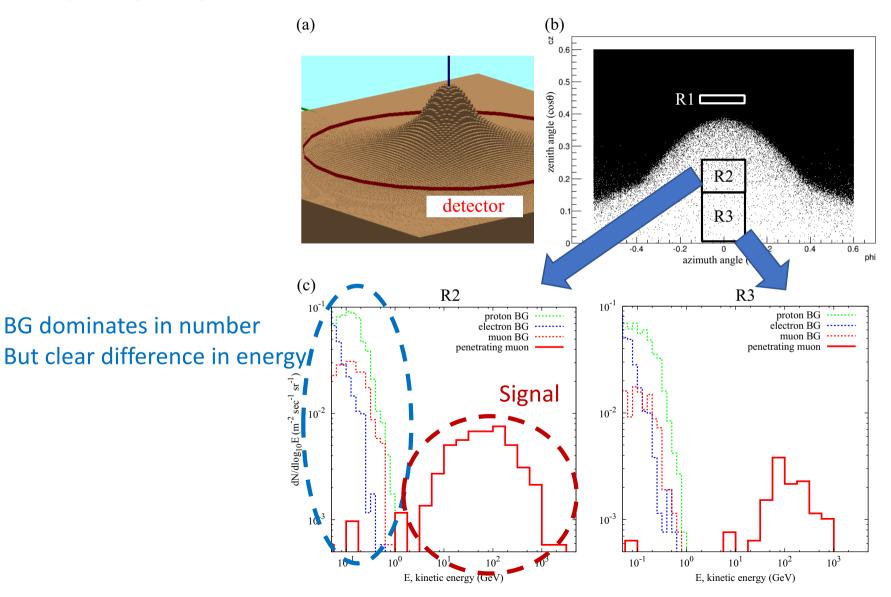
水中のミュー粒子

- 電磁シャワーは計算しない(縦発達だけB近似で代用)オプション
- Muon, hadronのみ計算、表示
- <4300mは水

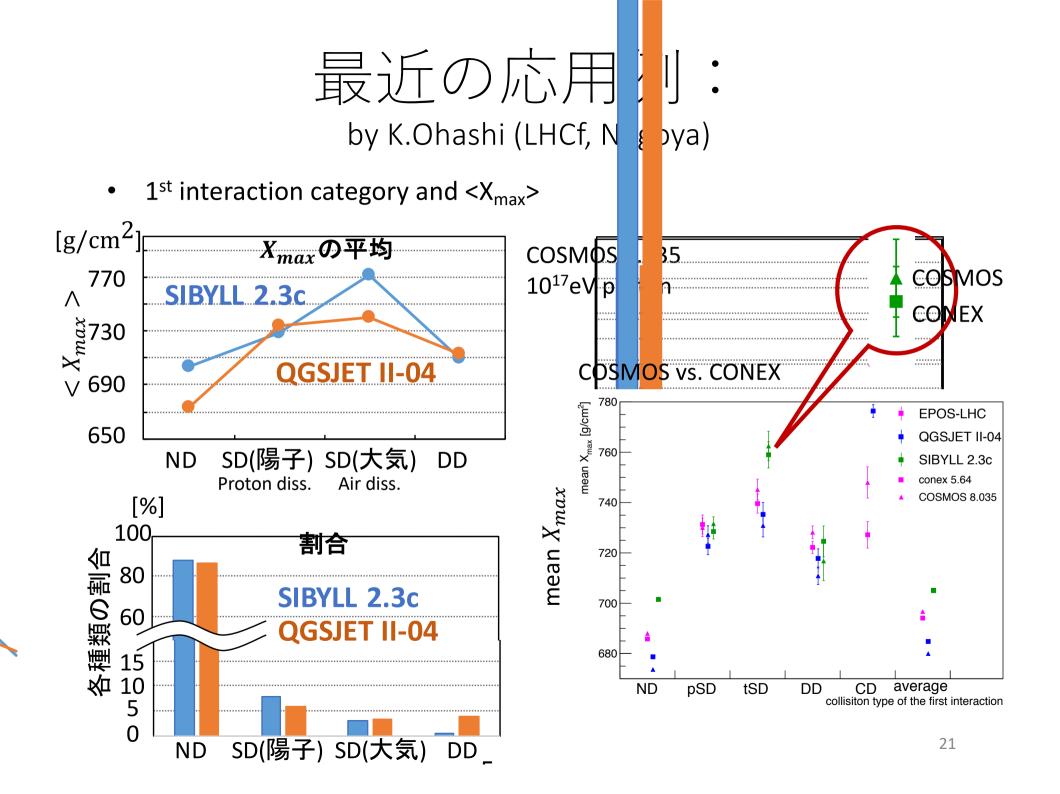

'primary' file

/

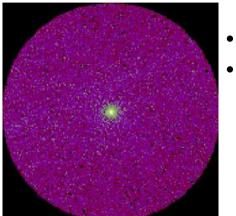
18


Primary definition

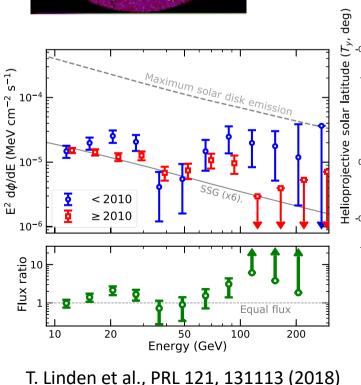
dN/dE

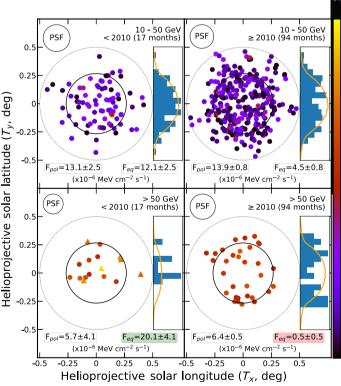


最近の応用例:Muography


(R.Nishiyama, A.Taketa, S.Miyamoto, K.Kasahara, Geophys. J. Int. (2016) 206)

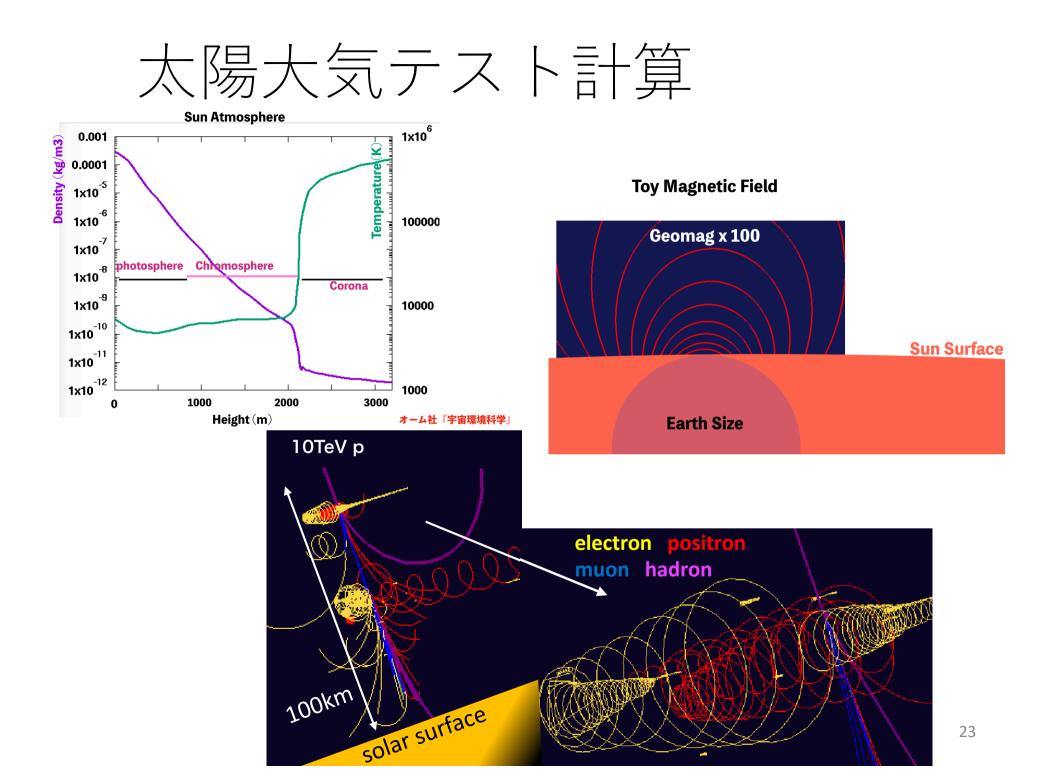
20




Extra-Terrestrial Air showers !? -- proposed application --

- Fermi/LAT observation
- GCR + solar atmosphere

A.Abdo et al., ApJ, 734:116 (10pp), 2011



- Time dependent energy spectrum, emission region
- GCR + solar magnetic field + interaction with H, He, ...

ΛF

4.2

• Quantitative explanation by COSMOS?

