SFGD Fiber Quality Check, Photo by Vladimir Baranov

Tokai-to-Kamioka Experiment

令和4年度東京大学宇宙線研 共同利用研究成果発表会 2023-02-22

Lukas Berns (Tohoku U) for the T2K Collaboration

ν -oscillation

(interaction) (propagation) For neutrinos flavor basis \neq Hamiltonian basis.

→ Flavor ($\nu_e | \nu_\mu | \nu_\tau$) oscillates over $L \times \Delta m^2 / E$, amplitude controlled by (PMNS) mixing matrix *U*:

- Beam monitors + hadron production experiments
 → neutrino flux
- ND280 measurements

 interaction model
 external constraints
 unoscillated flux × xsec
 - 6 samples at SK $\rightarrow \nu_{\mu}$ disappearance + ν_{e} appearance

- Beam monitors + hadron production experiments
 → neutrino flux
- ND280 measurements

 interaction model
 external constraints
 unoscillated flux × xsec
- 6 samples at SK $\rightarrow \nu_{\mu}$ disappearance + ν_{e} appearance

Ana stra

Beam monit
 production ∉
 → neutrino

+ interactic

+ external

Beam monitors

More re of cooli of cooli slightly uncerta

More realistic modeling of cooling water in horns slightly increased uncertainty at flux peak

Beam line modeling

Hadron production experiments

Hadron interaction uncertainty at high-E reduced thanks to higher-statistics **NA61** measurement that includes **kaon** yields from **replica** of T2K target.

An str

Beam monomorphic
 production
 → neutri

ND280 m
 + interac
 + externa
 → unosc

• 6 sample $\rightarrow \nu_{\mu}$ dist ν_{e} apr New NA61/SHINE measurements, and experiments to understand horn cooling water distributions are being performed for further reduction of systematics

Photo from summer 2022 (by Eric D. Zimmerman, NA61/SHINE)

- Beam monitors + hadron production experiments
 → neutrino flux
- ND280 measurements

 interaction model
 external constraints
 unoscillated flux × xsec
- 6 samples at SK $\rightarrow \nu_{\mu}$ disappearance + ν_{e} appearance

- Beam monitors + hadron production experiments
 neutrino flux
- ND280 measurements

 interaction model
 external constraints
 unoscillated flux × xsec
- 6 samples at SK $\rightarrow \nu_{\mu}$ disappearance + ν_{e} appearance

22 samples = (5×1+3×2)×2 separated by

- 1. π , p, γ multiplicity \rightarrow interaction mode
- 2. lepton charge
 → wrong-sign bkg
 (in antineutrino mode)
- 3. C / C+O target \rightarrow v+O xsec

Beam monitors + had production experimen \rightarrow neutrino flux

Post ND-fi

FGD1 ν_{...} CC0π 0p

- ND280 measurements + interaction model + external constraints \rightarrow unoscillated flux × xsec
- 6 samples at SK $\rightarrow \nu_{\mu}$ disappearance + ν_{ρ} appearance

- **22** samples = $(5 \times 1 + 3 \times 2) \times 2$ separated by
- 1. π , p, γ multiplicity \rightarrow interaction mode

FGD1 ν_u CC0π Np

Post ND-fi

Finer sample separation in this analysis

- Beam monitors + hadron production experiments
 → neutrino flux
- ND280 measurements

 interaction model
 external constraints
 unoscillated flux × xsec
- 6 samples at SK $\rightarrow \nu_{\mu}$ disappearance + ν_{e} appearance

- Beam monitors + hadron production experiments \rightarrow neutrino flux
- ND280 measurements + interaction model + external constraints \rightarrow unoscillated flux × xsec
- 6 samples at SK → ν_u disappearance + ν_{ρ} appearance

Multi-ring sample added for the first time

T2K Prelimina

• 6 samples at SK $\rightarrow \nu_{\mu}$ disappearance + ν_{e} appearance

Multi-ring sample added for the first time

 Δm_{32}^2 vs. θ_{23}

Atmospheric mixing parameters

World-leading measurement of atmospheric params, still compatible with both θ_{23} octants

New interaction model and ND samples cause largest change compared to 2020

Multi-ring ν_{μ} CC1 π sample only gives small contribution due to being above oscillation maximum

Constraints on δ_{CP} and mass ordering

Large region excluded at 3o

CP-conservation $\{0, \pi\}$ excluded at 90%, π is within 2σ

Weak preference of normal ordering

Slightly weaker compared to 2020 analysis, mainly due to updated model with new ND samples

 $\sin^2 \theta_{11} = 0.207$ $\Lambda m_{21}^2 = 2.509 \times 10^{-3} \text{eV}^2$

 $a : = -0.207 \quad \Delta m^2 = 2.509 \times 10^{-3} \text{eV}^2$

 $a : = \sin^2 a = 0.207$ $\Delta m^2 = 2.509 \times 10^{-3} \text{eV}^2$

Neutrons at SuperK (far detector)

- Neutron tagging at SK very interesting for $\nu/\overline{\nu}$ and CC/NC separation, requires good prediction of multiplicity
- Measured multiplicity using T2K beam, all generators over-predict
- Note: measurement uses data before adding Gd (H-capture)

Neutrons at SuperK (far detector)

- Neutron tagging at SK very interesting for $\nu/\overline{\nu}$ and CC/NC separation, requires good prediction of multiplicity
- Measured multiplicity using T2K beam, all generators over-predict
- Note: measurement uses data before adding Gd (H-capture)

After addition of Gadolinium...

Exponential decrease of #events *after* beam timing consistent with Gd capture time constant (115 µs)

Aim to measure neutron multiplicity on Gadolinium in future

Beam line upgrade

- Increase beam power from ~500 kW to 1.3 MW via upgrades to main ring power supply and RF (mostly increased rep rate)
- Many upgrades to neutrino beam line (target, beam monitors, ...) ongoing to accept 1.3 MW beam

T2K Projected POT (Protons-On-Target)

Beam line upgrade

- Increase beam power from ~500 kW to 1.3 MW via upgrades to main ring power supply and RF (mostly increased rep rate)
- Many upgrades to neutrino beam line (target, beam monitors, ...) ongoing to accept 1.3 MW beam
- Increase horn current
 250 kA → 320 kA for ~10% more
 v/beam-power and reduced wrong-sign background

Aiming for 320 kA operation in next run (end of April)!

Photos by Katharina Lachner

Summary

- Latest **T2K** neutrino oscillation results using 3.6×10^{21} protons on target, with many improvements at each level of analysis.
- **CP** conserving values of δ_{CP} excluded at 90%, large range excluded at 3σ .
- Many ongoing upgrades to the experiment
 - new near detectors
 - stronger beam, horns
- Exciting physics ahead coming with beam starting in April and NDup ready* for data in autumn * full detector at end of year

Thank you for continued support

backup

 Δm_{32}^2 vs. θ_{23}

Atmospheric mixing parameters

28

World-leading measurement of atmospheric params still compatible with both octants, very weakly preferring upper

- New interaction model and ND samples cause largest change compared to 2020
- Multi-ring ν_{μ} CC1 π sample only gives small contribution due to being above oscillation maximum

Constraints on δ_{CP} and mass ordering

29

- Large region excluded at 3σ
- CP-conservation {0, π} excluded at 90%,
 π is within 2σ
- In checks for biases caused by xsec model choices, left (right) 90% CI edge moves at most by 0.06 (0.05)
- Weak preference of normal ordering
- Slightly weaker constraint compared to 2020 analysis, mainly due to updated model with new ND samples

Comparison of released contours (not joint fit)

NOvA results: <u>A. Himmel (2020) Zenodo</u>, (preliminary) SK results: <u>Y. Nakajima (2020) Zenodo</u>, (preliminary) NOvA and T2K use Feldman-Cousins, SK use fixed $\Delta \chi^2$

- Joint fits between experiments with different oscillation baselines/energies and detector technologies
- → expect increased sensitivity in $\delta_{\rm CP}$, mass ordering, θ_{23} octant beyond stats increase from resolved degeneracies and syst constraints
- important to understand potentially non-trivial syst. correlations between experiments

Competition with NoVA

23 Jan 2010 – 27 Apr 2021 POT Total: 3.82 × 10²¹ (maximum power 522.6 kW) ν -mode: 2.17 × 10²¹ (56.8%) $\bar{\nu}$ -mode: 1.65 × 10²¹ (43.2%)