スーパーカミオカンデにおける 中性子信号を用いた陽子崩壊探索

東京大学 大学院理学系研究科 物理学専攻 神岡グループ 塩澤研究室 芳賀侑斗 2014/2/21 修士博士発表会

1.概要

р

 p→e⁺π^o陽子崩壊の大気vBGのさらなる低減
 - 2.2MeVガンマ線の中性子信号によるカット (2.2MeVガンマ線の中性子信号によるカット)

thermal neutron

n

deuteron

- 中性子検出における系統誤差評価
- 低BGでの陽子崩壊探索結果
- ・将来の展望

- 標準理論 $SU(3)_C \times SU(2)_L \times U(1)_Y$
 - 粒子の性質と相互作用を記述
- ・標準理論の限界

- ニュートリノ質量の矛盾 - |Q_p + Q_e| < 10⁻²¹

- 大統一理論 SU(5) SO(10) SUSY
 - 統一的に素粒子と相互作用を記述
 - $-(d_{r}^{c}, d_{g}^{c}, d_{b}^{c}, e, v) \rightarrow Q_{d} = \frac{1}{3}Q_{e}$ -シーソーメカニズム → ニュートリノ質量 - 理論の検証は非常に重要

- Xボソン、Yボソンにより陽子崩壊が予言
 バリオン数非保存
- モデルごとに予想される陽子の寿命が違う
- ・ SKでのcurrent limit: $\tau_p/B_{p o e^+ \pi^0} > 1.4 imes 10^{34}$ year
 - SK-I~SK-IV (260kton年)での測定 (SK-IV: 100kton年)

大統一理論のモデル検証において陽子崩壊探索は非常に重要

3.検出器

スーパーカミオカンデ

- 大型水チェレンコフ検出器
 - 世界最大の陽子崩壊検出装置
 - 直径39.3m×高さ41.4m
 - 全体積50kton
 - •有効体積22.5kton
 - -11129個のPMT
 - 水純化装置、空気純化装置
- 研究内容
 - 大気ニュートリノ、太陽ニュートリノ、陽子崩壊、T2K、超 新星

エレクトロニクス

- QBEE (QTC-based Electronics with Ethernet)
 - SK-IVから導入
 - トリガーをソフトウェアとして適応
 - prompt、delayイベントの記録
 - 全ヒットの記録
 - •内水槽で完結するイベントの後535µsecをすべて記録
 - 閾値より低い2.2MeVのガンマ線 (~10ヒット)を検出可能

3.シミュレーション

e⁺π^o陽子崩壊モンテカルロ

- 陽子崩壊事象
 - ¹H: back-to-backにe⁺とπ^oが放出
 ¹⁶O: 陽子の核内運動量、束縛エ
 ネルギーの質量補正
- ¹⁶O: パイオン核内効果
 一荷電交換、非弾性散乱、吸収
 一検出効率を大きく落とす要因 (反応確率: 60%)

π°

励起窒素原子核からの中性子放出

シミュレーション内の中性子

5.中性子検出

- 中性子捕獲寿命: ~200μsec

- p + n → d + γ (2.2MeV)
 - PMTヒット数:~10ヒット
 - ・従来の解析しきい値より低いエネルギー
 - BGとの識別が困難

- ニューラルネットワーク法を用いたタイミングクラスタの検出

検出アルゴリズム

- STEP1: Initial selection

 タイミングクラスタを検出し中性子
 イベントの候補を探す
 neutrino vertexからのTOFの補正

 STEP2: Neural Network

 <u>28個の観測量</u>を用いBGと中性子イベントを選別
 - 10ns内のヒット数
 - ヒットの0分布
 - ヒットのRMS ...
- 中性子検出効率: 23.9% - 誤検出確率: 2%/event

AmBeソース

・線源を用いたMCの中性子検出の妥当性の評価

 $\alpha + {}^{9}\text{Be} \rightarrow {}^{12}\text{C}^* + n$

¹²C* → ¹²C + γ (prompt) ← トリガー

 $n + p \rightarrow d + \gamma$ (delay)

- SKタンクの3箇所で線源を吊るし測定
- 中性子検出に成功
- MCはAmBeソースでの実験をよく再現している
 - 系統誤差:~10%
 - 検出効率の表

Center: タンク中心 Y12, Z15: タンク壁寄り

Position	AmBe	Gamma Ray MC	Atm. MC (closest bin)
Centre	$23.1{\pm}0.3\%$	$23.1{\pm}0.2\%$	$23.5{\pm}0.4\%$
Y12	$27.8{\pm}0.6\%$	$29.6{\pm}0.2\%$	$29.2{\pm}0.4\%$
$\mathbf{Z}15$	$26.7 {\pm} 0.5\%$	$27.4{\pm}0.2\%$	$29.0{\pm}0.5\%$

p→e⁺π^o陽子崩壊イベントセレクション

- A1. FCFV (Fully Contained, Fiducial Volume)カット
 - FCイベントで有効体積内のイベント
- A2. リング数のカット
 - リング数が2つまたは3つ
- A3. 粒子識別のカット
 - 全てのリングがelectron-like
- A4. π0不変質量のカット
 - 3リングでどれか2つのリングの不変質量が85MeV/c2~185MeV/c2の間
- A5. ミューオン崩壊電子数のカット
 - ミューオン崩壊電子数が0
- A6. 陽子の不変質量、運動量のカット
 - 不変質量が800MeV/c^{2~}1050MeV/c²の間、運動量が250MeV/c以下
- A7. 中性子のカット
 - 中性子信号が0

π°

陽子の不変質量と運動量の分布

- A1∩…∩A5のカット後 (A6, A7中性子カット前)
- ・ボックス内のイベントを選定
 - ボックス外のイベントは中性子の系統誤差の評価に用 いた

検出効率まとめ

- p→e⁺π⁰陽子崩壊モードの検出効率
 - ¹⁵N*からの中性子検出と誤検出の確率を考慮(1.4%減)
 - 39.5% (従来: 中性子カット無し) → 38.1% (本研究: 中性子カット有り)
 - 中性子のカットによる検出効率の影響は<u>少ない</u>

検出効率: 38.1%

バックグラウンドに対する中性子カット

• A1∩…∩A6の後 (A7中性子カット前)

中性子カットによるBG除去効率: 52%

p→e⁺π⁰陽子崩壊探索結果

• 稼働時間 (livetime): SK-IV1631日

検出効率: 38.1% バックグラウンド期待値: 1.2events/Mton/年 (0.12events/SK-IV1631日) SK-IV候補イベント: Oevent/livetime

カットのcriteria	大気 ニュートリノMC (/kton/年)	SK-IVデータ (/kton/年)	1	0 ²	MC FCFV	はデ		をよく	〈再現	して	いる
FCFV	129.86	132.27	ts/kt	0		J	PID	π ⁰	●★ decay-e	•	
リング数	33.08	33.94	even	1							
粒子識別	19.88	21.07	j 0 1	-1 -1							
π0不変質量	16.71	17.67	mbe	-2						мр	
崩壊電子数	11.62	12.44	₽ ¹⁰	ן כ		<mark>●</mark> …atr ☆ Sk	n MC 500 ye 4 data 1631	a r s 2 days		p, to	neutron
陽子の不変質 量・運動量	0.00245	0	1() ⁻³	A 1	A2	A3	A 4	A5	A 6	A7
中性子	0.00118	0	selection criteria					23			

中性子の系統誤差の評価

- 中性子に関する系統誤差
 - 中性子生成断面積·検出効率
 - e⁺π^o信号boxの外側のイベントサンプルを用いる
 - $-\sigma = |N_dst N_MC^*A|/(N_MC^*A) <$
 - ・振動の効果を考慮、イベント数で規格化
 - ・ 可視エネルギーが1GeV付近のイベントで評価←BGに効いてくる

中性子に関する系統誤差: 12%

カット: A1∩A2∩A3∩A4∩A5∩(A6)^c

寿命推定

- ベイズ統計 -系統誤差を考慮した寿命推定-
 - Γ:崩壊率、n: 観測イベント、λ: 稼働時間、ε: 検出効率、b: バックグラウンド

$$P(\Gamma|n) = \frac{1}{A} \int \int \int P(\Gamma \lambda \epsilon b|n) d\lambda d\epsilon db$$

$$A = \int_0^\infty P(\Gamma|n) d\Gamma, \quad C.L = \int_0^{\Gamma_{limit}} P(\Gamma|n) d\Gamma$$
$$P(\Gamma\lambda\epsilon b|n) = \frac{e^{-(\Gamma\lambda\epsilon+b)}(\Gamma\lambda\epsilon+b)^n}{n!} P(\Gamma)P(\lambda)P(\epsilon)P(b)$$

- 系統誤差
 - λ: ~1%
 - ε: 19%
 - パイオン核内効果の不定性
 - フェルミ運動量
 - 核子相関崩壊の割合など

- b: 46%
 - 中性子の系統誤差
 - ニュートリノフラックスの系統誤 差
 - 水中のハドロン相互作用

90%*C*.*L*.: $\tau_p / B_{p \to e^+ \pi^0} > 5.1 \times 10^{33}$ year

今後のSK10年での陽子崩壊探索の展望

- SK10年での感度
 - 従来のカット
 - BG: 0.55events/SK10年
 - 感度: 9.5×10³³年
 - 中性子カット
 - BG: 0.27events/SK10年
 - 感度: 1.0×10³⁴年
- Gdによる中性子の捕獲
 - $-n + Gd \rightarrow \gamma$'s (~8MeV)
 - 中性子検出効率: ~90% → e⁺π⁰検出効率: 36.9%
 - SK10年
 - BG: 0.09events/SK10年 (0.42events/Mton/年)
 - 感度: 1.1×10³⁴年

ハイパーカミオカンデ

- 超大型水チェレンコフ検出器
 - 全体積: 0.99Mton 研究目的
 - 有効体積: 0.56Mton
 - SKの約25倍
 - 99000個の20インチPMT
 - 光電面被覆率: 20%

- - ・陽子崩壊探索の強化
 - ニュートリノ振動パラメータの精 密測定
 - CP対称性の破れ、質量階層構造 の決定

HK10年での陽子崩壊探索の展望

- HK10年での感度
 - 従来のカット
 - BG: 13.7events/HK10年
 - 感度: 9.9×10³⁴年(90%C.L.), 5.0×10³⁴年(3σC.L.)
 - 中性子のカット
 - BG: 6.6events/HK10年
 - 感度: 1.3×10³⁵年 (90%C. .), 6.2×10³⁴年(3σC.L.)

~30%改善

- Gdによる中性子の捕獲 - HK10年
 - BG: 2.4events/HK10年
 - 感度: 1.7×10³⁵年 (90%C.L.), 7.9×10³⁴年(3σC.L.)

まとめ

- ・中性子信号を用いたp→e⁺π^oモードの陽子崩壊BG 研究
 - 中性子信号によるカット
 - BG数: 2.45 events/Mton/年 → 1.18events/Mton/年 (48%減)
 - 検出効率: 39.5% → 38.1%
 - 寿命の下限値: 5.1×10³³年 (90%C.L.)
 - livetime: SK-IV1631.2日
 - SK10年
 - 感度: 9.5×10³³年 → 1.0×10³⁴年 (Gd入: 1.1×10³⁴年)
 - HK10年
 - 90%C.L.感度: 9.9×10³⁴年 → 1.3×10³⁵年 (Gd入: 1.7×10³⁵年)
 - 3σC.L.感度: 5.0×10³⁴年 → 6.2×10³⁴年 (Gd入: 7.9×10³⁴年)

Back-up

シミュレーション

p→e⁺π^o陽子崩壊モンテカルロ

- 検出効率を評価

• 大気ニュートリノモンテカルロ – バックグラウンドを評価

中性子分類

モンテカルロでの中性子情報

- 真の中性子と再構成された中 性子の比較
 - タイミングが近いものを対応
 - タイミングの差が5µsec以上のものは
 miss tagging
 - water interactionからの中性子は vertexがニュートリノvertexから離 れているため効率が落ちる
 - miss tagging/neutrino eventは2%

分類	再構成された数 (割合)	真の数 (割合)	効率 (再構成/真)
primary interaction	7499 (10.6%)	32225 (10.1%)	23.3%
nuclear effect	12628 (17.8%)	54314 (17.0%)	23.3%
water interaction	47936 (67.5%)	232853 (72.9%)	20.6%
miss tagging	2938 (4.1%)	*	*
total	71001 (100%)	319392 (100%)	22.2%

中性子の系統誤差の評価

化

• 系統誤差

– |data – MC*norm.|/data

エネルギーごとの系統誤差

• 可視エネルギーごとの系統誤差

– [low][middle][high]

陽子崩壊BGに効いてくるのは1GeV程度の領域
 本解析では[high]領域の系統誤差で見積もる

中性子に関する系統誤差:13%

検出効率のまとめ

- 検出効率 = カットに残ったイベント / 真のFVイベント
 - 陽子崩壊MCには中性子信号情報は記録されていない
 - ・ 別途見積り

カットのcriteria	全陽子数 (効率)	自由陽子数 (効率)
有効体積内	8202 (99.2%)	1625 (99.6%)
リング数	5768 (69.8%)	1602 (98.2%)
粒子識別	5155 (62.4%)	1475 (90.4%)
π0不変質量	5007 (60.6%)	1433 (87.9%)
崩壊電子数	4925 (59.6%)	1433 (87.9%)
陽子の不変質量・運動量	3269 (39.5%)	1424 (87.3%)
中性子	?	?

検出効率への中性子カットの影響

- 考慮対象
 - ¹⁵N(s-hole)から放出される中性子捕獲イベント
 - ¹⁶0内のs軌道の陽子の数×中性子放出の割合×捕獲効率
 - 500×0.484×0.239 = 57.8イベントが除去される
 - Ⅱ. 誤検出イベント
 - 捕獲中性子0のイベント×イベントあたりの誤検出確率
 - (3269-57.8)×0.02=64.2イベントが除去される
 - うち、自由陽子であるイベントは28.5イベント

112.0イベントが除外される見込み

Gdによる中性子の捕獲

- $n + Gd \rightarrow \gamma$ (~8MeV)
 - SKの通常のトリガーで検出可能
 - 中性子検出効率: ~90%

ev #	primary interaction	nuclear effect		water interaction	neutron info	file #
1	v _e +n→e ⁻ +p+π ^o	NONE		NONE	true:0 tag:1	006
2	v _e +n→e ⁻ +n+π ⁺	π⁺→π%n→n+p		3	true:4 tag:1	011
3	ν _e +p→e ⁻ +p+π ⁺	NONE	red n means	1	true:1 tag:0	055
4	v _e +n→e ⁻ +p+p	NONE	true neutron	2	true:2 tag:0	072
5	v _e +n→e⁻+p+π⁰	π°→π°	which change to deuteron	NONE	true:0 tag:0	085
6	v _e +n→e ⁻ +n+π ⁺	NONE		NONE	true:1 tag:0	106
7	v _e +n→e⁻+p	p→π°+	n+p	5	true:6 tag:1	121
8	v _e +n→e ⁻ +p+π°	π°→π%p→π⁺+ <mark>n+n</mark> +p/ π⁺→p+p		1	true:3 tag:0	169
9	v _e +n→e ⁻ +n+π ⁺	π⁺→р+і	n/n <mark>→n+n</mark>	5	true:7 tag:1	173
10	v _e +n→e ⁻ +p+π ^o	p→p+n	+n+n	4	true:7 tag:3	180
11	ν _e +p→e ⁻ +p+π ⁺	NONE		2	true:2 tag:0	221
12	ν _μ +n→ν _μ + <mark>n</mark> +π ^o	NONE		NONE	true:1 tag:1	228
13	v _e +n→e ⁻ +n+π ⁺	π⁺→ π%	n <mark>→n+n</mark>	3	true:5 tag:2	237
14	⊽ _e +p→e⁺+p+π⁻+ <mark>n</mark>	π⁻→π°		NONE	true:1 tag:1	283
15	$\overline{v}_{e}+n \rightarrow \overline{v}_{e}+n+\pi^{o}$	$\pi^{o} \rightarrow \pi^{o}$		1	true:2 tag:1	296

ev #	primary interaction	nuclear effect	water interaction	neutron info	file #
16	\overline{v}_{μ} +p $\rightarrow \overline{v}_{\mu}$ +p+ π^{o}	NONE	3	true:3 tag:0	309
17	ν _μ +n→ν _μ +p+π ⁻ +π ^o	π⁻ →n +π⁰+π⁺+π⁻/π⁺→π᠀′ π⁰→p+p+n+n	11	true:12 tag:3	339
18	ν _e +n→e ⁻ +n+π ^o +π ⁺	π°→π%π⁺→π⁺/n→ n +p	1	true:2 tag:0	376
19	$v_e^+n \rightarrow v_e^+p^+\pi^0^+\pi^-$	NONE	2	true:2 tag:1	³⁷⁹ bug
20	v _e +n→e ⁻ +n+π ⁺	π⁺→n+π⁺+π%n→n+ <mark>n</mark> +p/ n→n+p	9	true:11 tag:4	384
21	⊽ _e +p→e⁺+n+π⁰	π⁰→π⁰n→π⁻+ <mark>n</mark> +p+n/ π⁻→p+n	NONE	true:2 tag:0	427
22	ν _μ +p→ν _μ +n+π ⁺ +π ^o	$\pi^+ \rightarrow \pi^0 / \pi^0 \rightarrow \pi^0$	2	true:3 tag:0	433
23	v _e +n→e⁻+p+ <mark>n</mark>	p→π°+p+ <mark>n+n</mark> +p	1	true:4 tag:0	465
24	ν _e +n→e ⁻ +n+π⁰+π⁺	π°→π [°] /n→π [°] +n+p+p+n+ n+p+p+p+p/ π [°] →p+p+n+n	5	true:8 tag:2	471
25	v _e +n→e ⁻ +p+π ^o	p→p+ <mark>n+n</mark> +p+p+p+p+p	3	true:5 tag:1	478
26	v _e +n→e ⁻ +p+π ^o	NONE	NONE	true:0 tag:0	482
27	v _e +n→e ⁻ +p+π ^o	$\pi^{o} \rightarrow \pi^{o}$	NONE	true:0 tag:0	494

