Study of backgrounds from detector materials in the XMASS experiment

OKA Naoya

Kamioka Observatory, ICRR

Feb. 21st, 2014 Master and Doctor Thesis Presentation at ICRR

Dark Matter

Evidence in various scale.

- Velocity variance of galaxies in a cluster
- Rotation curves of spiral galaxies including our galaxy ↑ We can search directly

Small

• WIMPs (Weekly Interacting Massive Particles) are the most likely candidate for particle DM is

The XMASS experiment

642 PMTs view 835 kg of liquid xenon inside.

PMT Hamamatsu10789-11

Backgrounds in XMASS (2010~2012)

- From detector materials
- From RI(⁸⁵Kr, ²²²Rn(U chain), ²²⁰Rn(Th chain)) in liquid xenon
- From outside (neutron)

• Contribution from detector material is dominant in this experimental phase.

Backgrounds from detect 5 000 2380 S (2010~2012)

- Most of backgrounds were from PMTs.
- ← Energy spectrum in XMASS (~2012) before fiducial volume cut
- Black:Observed data
- Yellow: Simulation of gamma ray from PMT (Expected before construction)
- Other: Simulation of Surface BG (Unexpected)

Al seal on PMT

Backgrounds from detect 5 . 60Co 238 $(2010 \sim 2012)$

- After the refurbishment of XMASS conducted until 2013,
 - component other than yellow will be reduced.
- Gamma ray from materials other than PMT needs to be

Materials other than PMT

 Gamma-ray contribution from these materials was studied in this thesis.

RI measurement by Ge de Contone Sevent Seven

- Measured before detector construction in 2
 - Measured about 250 samples, about 90 were used in XMASS.
- I rearranged these materials into 13 parts by position and evaluated its effect by Monte Carlo simulation.

場所	部材数	²³⁸ U 系列 (mBq)	²³² Th 系列 (mBq)	60 Co (mBq)	40 K (mBq)
PMT ホルダー内側表面	4	8.0 ± 3.3	2.7 ± 3.4	0.34 ± 1.3	-34 ± 41
PMT ホルダー内部その1	7	-3.4 ± 4.2	-2.8 ± 23	-3.6 ± 1.7	-7.9 ± 51
PMT ホルダー内部その2	22	28 ± 22	50 ± 22	231 ± 13	-306 ± 208
PMT ホルダー吊具	3	24 ± 11	103 ± 12	261.2 ± 9.3	-116 ± 78
PMT ホルダー上部の銅リング	17	4 ± 34	-5.6 ± 31.2	22 ± 13	-390 ± 290
フィラー内部	2	0.0 ± 1.2	-0.6 ± 1.3	-1.00 ± 0.50	-20 ± 15
IVC 外側表面	16	1181 ± 375	920 ± 354	246 ± 133	722 ± 3339
IVC 上フタ溶接	1	1310 ± 640	1070 ± 610	31 ± 230	-2000 ± 5800
IVC 下容器溶接	1	-250 ± 110	2240 ± 160	28 ± 33	-870 ± 980
OVC 上フタ溶接	1	510 ± 250	420 ± 240	12 ± 88	-790 ± 2300
OVC 下容器溶接	1	-300 ± 131	2620 ± 180	33 ± 39	-1020 ± 1140
OVC 外側表面から 1m 以内	8	5330 ± 760	4720 ± 810	2300 ± 430	-3900 ± 5500
検出器架台	3	-21100 ± 2600	5000 ± 2700	6700 ± 1400	-30000 ± 20000

表 5.11 XMASS-1 検出器に使用された部材の場所ごとの RI 含有量

サンフ

超音波洗浄

ーターで寒いだ部分

サンプル

サンプル

シーターで密封する

サンプル

Ge detector

Self shielding, fiducial cut, and reconstruction

- As atomic number of Xe is large, cross section of gamma ray is large and center area of liquid xenon is gamma-ray less.
 - Gamma ray achieved center area will deposit all energy, and it will be larger than WIMP signal region (few 10 keV).
- By removing events R>20 cm with vertex reconstruction, low BG measurement is realized.
 - Mis-reconstruction of events will not be negligible.

MC simulation of gamma rays from decay of Uchain on XMASS detector inner surface (R=40 cm). Blue tracks show gamma rays. Deep magenta shows fiducial volume (R<20cm)

Ex1:PMT holder part 1

- Largest contribution in this study.
- Dominant origin is Th-chain on thermometers.

Ex2:PMT holder part 2

 Contribution of ⁶⁰Co on stainless bolts was large.

Ex3: Welding on IVC and OVC

Contribution of Th-chain and U-chain was large.

Ex4: Support structure

 Contain much RI, but distant from detector and shielding by water was effective. MC simulation of 100 times decay of ⁶⁰Co at support structure position. (Light blue shows gamma ray, black shows neutrino.)

Result

 Right lower figure shows expected BG spectrum in WIMP signal region after fiducial cut.

Conclusion

 By comparison of full volume spectrum, gamma ray contribution from materials other than PMT (red in right figure) was at most 25% of gamma rays from PMT(yellow in left figure).

- After fiducial cut, mis-reconstructed events were left in below 100 keV.
- Improvement reconstruction is necessary to reduce them.