Telescope Array group

Kozo Fujisue Telescope Array group

Telescope Array Collaboration

R.U. Abbasi¹, Y. Abe², T. Abu-Zayyad^{1,3}, M. Allen³, Y. Arai⁴, R. Arimura⁴, E. Barcikowski³, J.W. Belz³, D.R. Bergman³, S.A. Blake³, I. Buckland³, B.G. Cheon⁵, M. Chikawa⁶, A. Fedynitch^{6,7}, T. Fujii^{4,8}, K. Fujisue⁶, K. Fujita⁶, R. Fujiwara⁴, M. Fukushima⁶, G. Furlich³, Z. Gerber³, N. Globus^{9*}, W. Hanlon³, N. Hayashida¹⁰, H. He⁹, R. Hibi², K. Hibino¹⁰, R. Higuchi⁹, K. Honda¹¹, D. Ikeda¹⁰, N. Inoue¹², T. Ishii¹¹, H. Ito⁹, D. Ivanov³, A. Iwasaki⁴, H.M. Jeong¹³, S. Jeong¹³, C.C.H. Jui³, K. Kadota¹⁴, F. Kakimoto¹⁰, O. Kalashev¹⁵, K. Kasahara¹⁶, S. Kasami¹⁷, S. Kawakami⁴, K. Kawata⁶, I. Kharuk¹⁵, E. Kido⁹, H.B. Kim⁵, J.H. Kim³, J.H. Kim^{3[†]}, S.W. Kim¹³, Y. Kimura⁴, I. Komae⁴, K. Komori¹⁷, Y. Kusumori¹⁷, M. Kuznetsov^{15,18}, Y.J. Kwon¹⁹, K.H. Lee⁵, M.J. Lee¹³, B. Lubsandorzhiev¹⁵, J.P. Lundquist^{3,20}, T. Matsuyama⁴, J.A. Matthews³, J.N. Matthews³, R. Mayta⁴, K. Miyashita², K. Mizuno², M. Mori¹⁷, M. Murakami¹⁷, I. Myers³, S. Nagataki⁹, K. Nakai⁴, T. Nakamura²¹, E. Nishio¹⁷, T. Nonaka⁶, S. Ogio⁶, H. Ohoka⁶, N. Okazaki⁶, Y. Oku¹⁷, T. Okuda²², Y. Omura⁴, M. Onishi⁶, M. Ono⁹, A. Oshima²³, H. Oshima⁶, S. Ozawa²⁴, I.H. Park¹³, K.Y. Park⁵, M. Potts^{3[‡]}, M.S. Pshirkov^{15,25}, J. Remington³, D.C. Rodriguez³, C. Rott^{3,13}, G.I. Rubtsov¹⁵, D. Ryu²⁶, H. Sagawa⁶, R. Saito², N. Sakaki⁶, T. Sako⁶, N. Sakurai⁴, D. Sato², K. Sato⁴, S. Sato¹⁷, K. Sekino⁶, P.D. Shah³, N. Shibata¹⁷, T. Shibata⁶, J. Shikita⁴, H. Shimodaira⁶, B.K. Shin²⁶, H.S. Shin⁶, D. Shinto¹⁷, J.D. Smith³, P. Sokolsky³, B.T. Stokes³, T.A. Stroman³, Y. Takagi¹⁷, K. Takahashi⁶, M. Takamura²⁷, M. Takeda⁶, R. Takeishi⁶, A. Taketa²⁸, M. Takita⁶, Y. Tameda¹⁷, K. Tanaka²⁹, M. Tanaka³⁰, S.B. Thomas³, G.B. Thomson³, P. Tinyakov^{15,18}, I. Tkachev¹⁵, H. Tokuno³¹, T. Tomida², S. Troitsky¹⁵, R. Tsuda⁴, Y. Tsunesada^{4,8}, S. Udo¹⁰, F. Urban³², I.A. Vaiman¹⁵, D. Warren⁹, T. Wong³, K. Yamazaki²³, K. Yashiro²⁷, F. Yoshida¹⁷, Y. Zhezher^{6,15}, and Z. Zundel³

Belgium, Czech Republic, Japan, Korea, Russia, Slovenia, USA

7 countries, 32 institutes

Overview of the Telescope Array (TA) experiment

• Aim

- Understanding ultra-high energy cosmic rays (UHECRs) by observation
- Measuring energy, arrival direction, and mass of UHECRs

Method

Observing cosmic-ray induced air showers with two types of detectors:

- Surface detectors (SDs)
- Fluorescence detectors (FDs)

Overview of the Telescope Array (TA) experiment

SD: measuring the **lateral distribution** of particles in air shower

- pros. ~100% duty cycle
- cons. Not mass sensitive Large sys. err. in energy estimation

FD: measuring the **longitudinal development** of air shower

- pros. Mass sensitive, calorimetric obs.
- cons. ~10% duty cycle

SD and FD observations are complementary

Overview of the Telescope Array (TA) experiment

- Located in Utah, U.S. at altitude of 1400 m
- 507 SDs (3 m² area, 1.2 km spacing) covering ~700 km²
 - Largest cosmic-ray observatory in the northern hemisphere
- 3 FD stations
 - Looking over SD array for hybrid detection
- Started observation in 2008

Reconstruction by SD

• 2 layers of plastic scintillators (1 m x 1.5 m, thickness: 1.2 cm)

150cm

WLSF

PMT for Lower Layer PMT for Upper Layer

• 12 bit 50 MHz FADC

100cm

Tyvek Sheet

Stainless steel plate

Scintillator

10

10³

Lateral distance [m]

ICRR young researchers' workshop 2023

Reconstruction by SD

 2 layers of plastic scintillators (1 m x 1.5 m, thickness: 1.2 cm)

150

PMT for Lower La PMT for Upper

• 12 bit 50 MHz FADC

100cm

Tyvek Sheet

Stainless steel plate

Scintillator

10

 10^{3}

Lateral distance [m]

Reconstruction by FD

- 256 PMTs in a camera
- 12—14 telescopes in each station
- Covering 3°– 21° altitude

Reconstruction by FD

• 256 PMTs in a camera
• 12-14 telescopes

in each station Covering 3° – 21°

Hit timing & geometry of signals \rightarrow arrival direction Signal size \rightarrow energy

Depth where energy deposit is maximum (Xmax) \rightarrow mass

Hybrid reconstruction

- Better reconstruction
- Calibrate SD-energy by FD-energy
 - to reduce model dependence of SD energy reconstruction

Energy spectrum

14 years of **TA SD** data (2008 –2022)

(Originally observed by Auger)

Pierre Auger Collaboration, Phys. Rev. Lett. **125**, 121106 (2020)

11

Anisotropy TA hotspot

14 years of **TA SD** data (2008 – 2022)

Original hotspot with **5 years** of TA SD data TA collaboration, *ApJL* **790** L21 (2014)

r-galactic plane

180

R.A. (deg)

Post-significance : 3.4 σ

Super

60

-60

Dec. (deg)

30

360

-30

Maximum significance position: (144.0°, 40.5°)

E > 57 EeV

3

2

0

-1

-2

-3

Anisotropy New intermediate-scale anisotropy

14 years of **TA SD** data (2008 –2022)

 New excess at lower energy region in the direction of **Perseus-Pieces Supercluster**

Composition

10 years of TA hybrid data: 3560 events after event selection

 Agreement with mixtures of light composition using QGSJET II-04 as a hadronic interaction model in 10^{18.2}eV – 10^{19.1} eV

13.1

-112.8

Longitude (deg.)

TALE	80	400–600	~20	2017	10 ¹⁶	$\text{eV} < \text{E} < 10^{\textbf{18.5}}\text{eV}$			
TALE infill	50	100	~0.4	(2023)	10 ¹⁵	$eV < E < 10^{17} eV$			
* Additionally deployed part, about half of the final plan									

-112.2

-112.5

* Additionally deployed part, about half of the final plan

Energy spectrum & composition

TAx4 experiment

Not many highest energy events: \sim 35 events (E >10²⁰ eV) (TA + Auger)

We need more statistics at the highest energy region \rightarrow TAx4 !

TAx4 experiment

Energy spectrum

- 3 years of TAx4 SD
 - In this period,
 6 sub-arrays operated independently
- Consistent with TA SD energy spectrum including cutoff structure

Prospects

- Inter-tower trigger was implemented in Oct. 2022
 - → Increasing the aperture
- Data analysis is ongoing

Summary

- $\boldsymbol{\cdot}$ The TA experiment observes UHECRs in the Northern Hemisphere
- Energy spectrum $(10^{15.5} \text{ eV} 10^{20.5} \text{ eV})$
 - Some features: Knee, 2nd-Knee, Ankle, Shoulder(Instep), Cutoff
- \cdot Mass composition (10^{16.5} eV-10^{19.1} eV)
 - \cdot Agreement with light composition in $10^{18.2}~{
 m eV}-10^{19.1}~{
 m eV}$
 - · <Xmax> break around 2nd-knee (~ $10^{17.1}$ eV)
- \cdot Anisotropy
 - TA hotspot for E > 57 EeV = $10^{19.76}$ eV: $\textbf{3.2}\,\sigma$ with 14 years of TA SD data
 - \cdot New excess in direction of PPSC for E $> 10^{19.4}~\text{eV}$
- \cdot TALE infill (for $10^{15}~\text{eV} < \text{E} < 10^{16.5}~\text{eV})$
 - $\boldsymbol{\cdot}$ It will start observation in near future
- TAx4 (for $E > 10^{19.7} \text{ eV}$)
 - Energy spectrum is consistent with TA SD energy spectrum

Backup

Anisotropy Large-scale anisotropy

TA 14 years: **395 events** $E_{TA} \ge 40.5 \text{ EeV}$ Auger 17 years: **2635 events** $E_{Auger} \ge 32 \text{ EeV}$

A. di Matteo (UHECR2022)

- Dipole analysis
- \rightarrow UHECRs with E > 10¹⁹ eV are extra-galactic dominant
 - (original paper: Science 357 (2017) 6537, 1266-1270)

Anisotropy Correlation with galaxies

TA 14 years: **395 events** $E_{TA} \ge$ **40.5 EeV** Auger 17 years: **2635 events** $E_{Auger} \ge$ **32 EeV**

A. di Matteo presentation at UHECR2022

catalogue	$E_{min}^{(Auger)}$	$E_{\min}^{(TA)}$	$oldsymbol{\psi}\left[deg ight]$	f [%]	TS	significance
all galaxies	40 EeV	51 EeV	29^{+11}_{-12}	41^{+29}_{-18}	14.3	2.70 _{global}
starburst	38 EeV	49 EeV	$15.1^{+4.6}_{-3.0}$	$12.1^{+4.5}_{-3.1}$	31.1	$4.6\sigma_{global}$

- Best correlation with starburst galaxies
 - However, only ~12% can be explained

