

# Current status and expectations for XRISM

Yutaka Fujita (Tokyo Metro. Univ.) XRISM Project Science Management Office



### XRISM collaboration





XRISM Team Meeting (Mar. 2024 @Tokyo University of Science)

133 Science Members + 39 XRISM Guest Scientist + 27 PD + 79 Students (Feb 2024) + Engineers/Developers + External Science Advisory Panel





- 1. Introduction the XRISM mission –
- 2. Mission status from Ground to the First Light
- 3. Collaboration with XRISM GO program -
- 4. Examples of expected results



### 1. Introduction – the XRISM mission –



# 1.1 Latest figures of XRISM

#### 2024.1.5 XRISM First Light

#### © JAXA



#### X-ray Imaging and Spectroscopy Mission with high energy resolution and large Field of View



# 1.1 Latest figure of XRISM

#### 2024.3.4 XRISM Early Release Data

© JAXA



Consistent with Hitomi results



# 1.2 XRISM Science instruments and Spec

Recovery mission of Hitomi/ASTRO-H

Hitomi Satellite (2016)

- Soft X-ray spectroscopy with high energy resolution (X-ray micro calorimeter)
- Soft X-ray Imaging (X-ray CCD)
- Hard X-ray Imaging (DSSD+CdTe)
- Soft Gamma-ray spectroscopy with high sensitivity (Si+CdTe)





XRISM Science Instruments



XRISM (2023-)

- X-ray micro calorimeter (Resolve)
- X-ray CCD camera (Xtend)

Quick recovery of soft X-ray spectroscopy

© JAXA



# 1.2 XRISM Science instruments and Spec (cont.)



| Parameters               | Resolve                                                       | Xtend                                                                 |  |  |  |
|--------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| X-ray Mirrors            | Walter I optics                                               |                                                                       |  |  |  |
| Focal Length             | 5.6 m                                                         |                                                                       |  |  |  |
| Angular Resolution       | $\leq$ 1.7 arcmin (HPD)                                       |                                                                       |  |  |  |
| Detector Technology      | X-ray micro calorimeter                                       | X-ray CCD                                                             |  |  |  |
| Effective Area           | ≥ 220 cm <sup>2</sup> @ 6 keV<br>≥ 160 cm <sup>2</sup> @1 jeV | $\geq 300 \text{ cm}^2 @ 6 \text{ keV}$                               |  |  |  |
| Field of View            | $\geq$ 2.9 × 2.9 arcmin <sup>2</sup>                          | $\geq$ 30 × 30 arcmin <sup>2</sup>                                    |  |  |  |
| Energy Range             | 0.3 – 12 keV                                                  | 0.4 – 12 keV                                                          |  |  |  |
| Absolute Energy Scale    | $\leq$ 2 eV                                                   | -                                                                     |  |  |  |
| Energy Resolution        | $\leq$ 7 eV FWHM @ 6 keV                                      | $\leq$ 250 eV @ 6 keV, EOL                                            |  |  |  |
| Non-X-ray Background     | $\leq$ 2 × 10 <sup>-3</sup> c/s/keV/array                     | $\leq 1 \times 10^{-4}$<br>c/s/keV/arcmin <sup>2</sup><br>in 5-10 keV |  |  |  |
| Absolute Timing Accuracy | $\leq 1  \text{ms}$                                           | -                                                                     |  |  |  |

High-energy-resolution spectroscopy & large FOV imaging in keV band







 $10^{-1}$ 

 $10^{6}$ 

10<sup>8</sup>

 $10^{12}$   $10^{14}$   $10^{16}$ 

Density  $(cm^{-3})$ 

1010

₽ 10<sup>-17</sup>

10<sup>-18</sup> 10<sup>-19</sup>

≝ 10<sup>-20</sup>

 $10^{-2}$ 

10<sup>0</sup>

Temperature (keV)

10<sup>1</sup>

 $10^{2}$ 

 $10^{-1}$ 

 $10^{18}$   $10^{20}$ 

the outer region. a–c, Gaussians (red curves) were fitted to lines with energies (marked by short red lines) from laboratory measurements in the case of He-like Fe xxv (a, c) and from theory in the case of Fe xxvi Ly $\alpha$  (b; see Extended Data Table 1 for details) with the same velocity dispersion ( $\sigma_v = 164 \text{ km s}^{-1}$ ), except for the Fe xxv He $\alpha$  resonant line,

#### XRISM can search for Charge Exchange lines.

• Science Objectives: Ionization of neutral gas by Cosmic-rays etc.



# 1.3 What XRISM can measure ? (cont.)

#### Three Points

#### 2. Spatially-resolved high-resolution X-ray spectra



Position  $\leftarrow \rightarrow$  Energy (wavelength)

#### Grating Image of Cas A with different roll angles





Rutherford+ 2013

Grating optics : energy and spatial information are mixed.  $\rightarrow$  not suitable to observe diffuse objects



XRISM can provide pixel-by-pixel X-ray spectra.

![](_page_13_Picture_0.jpeg)

# 1.3 What XRISM can measure ? (cont.)

#### Three Points

![](_page_13_Figure_3.jpeg)

![](_page_13_Figure_4.jpeg)

![](_page_14_Picture_0.jpeg)

# 1.4 XRISM Science Objectives

![](_page_14_Picture_2.jpeg)

3 Key points: a. Plasma diagnostics, b. Spatially resolved, c. Fe-K line band

- 1. Structure of the Universe and evolution of Galaxy Clusters
  - i. Reveal the spatial distribution and its dissipation of thermal and non-thermal energy of the largest gravitationally bounded system clusters of galaxies.
  - ii. Directly observe the sites of their growth mechanism from both thermodynamic and kinematic aspects.
- 2. Circulation history of baryonic matters in the Universe
  - Trace baryon cycles in various stages from element synthesis by stellar objects and supernovae to material dissipation in interstellar to intergalactic space
  - ii. Directly observe the element abundance evolution in the cosmic structure formation.
- **3**. Transport and circulation of energy in the Universe
  - . Reveal matter and energy feedback from galaxies and active galaxies
  - i. Observe the impacts to the coevolution of galaxies and super-massive black holes.
- 4. New science with unprecedented high resolution X-ray spectroscopy
  - i. Develop new methods for plasma diagnostics and measurements of velocity and gravitational redshift in the spectra of matter around relativistic objects to open new horizons in X-ray astrophysics..

# Reserved to the second second

### 2. Mission status from Ground to the First Light

![](_page_16_Figure_0.jpeg)

![](_page_17_Picture_0.jpeg)

# Resolve performance on ground

Ishisaki et al., Proc. of SPIE 2022

![](_page_17_Figure_3.jpeg)

- Absolute energy scale accuracy < 2 eV in 0.3 9 keV band.</li>
- Energy resolution (Hres) < 4.9 eV (amazing!)</li>
  - -- both satisfy the requirement.

![](_page_18_Picture_0.jpeg)

### Launch on 7 Sep 2023

© JAXA, MHI

#### 2023.9.7 8:42JST, Dual launch by H-IIA Flight 47

![](_page_18_Picture_4.jpeg)

#### 2023.9.7 8:56JST, Satellite separation

![](_page_18_Picture_6.jpeg)

#### Successful launch !

![](_page_19_Picture_0.jpeg)

# Critical Operation (Y+1,2,3,4)

Soon after the launch, tracking of satellite was started and performed critical operations.

![](_page_19_Picture_3.jpeg)

![](_page_19_Picture_4.jpeg)

- Communication with ground stations
- ✓ Solar paddle deployment
- ✓ Launch lock release
- ✓ Attitude control system
- ✓ Resolve cooler ON

All smoothly completed.

![](_page_20_Picture_0.jpeg)

# **Commissioning Operations**

After the bus system commissioning (GPS, Attitude, Power Supply etc), we turn on science instruments 2023.10.9 Resolve 50mK achieved 2023.10.21 Xtend first detection of X-rays

![](_page_20_Picture_3.jpeg)

At this moment, we recovered the Hitomi.

![](_page_21_Picture_0.jpeg)

# Commissioning Operations (cont.)

#### 2023.10.20, Energy resolution check: Resolve calibration source (55Fe) in orbit

![](_page_21_Figure_3.jpeg)

Energy Resolution < 5 eV in orbit !! Of course, this is within the requirement on the energy resolution.

2023.10.23 Resolve MXS (Modulated X-ray source) operation, OK

# Commissioning Operations (cont.)

#### 2023.11~ Resolve Gate Valve Open operation – still ongoing

![](_page_22_Figure_3.jpeg)

Effective area in lower energy band is not in full configuration at this moment. We plan to keep GV Open operation during PV phase.

![](_page_23_Picture_0.jpeg)

# Commissioning Operations (cont.)

Simulated X-ray spectra with/without GV for SNR N132D →

![](_page_23_Picture_3.jpeg)

![](_page_23_Figure_4.jpeg)

\* Real data with GV closed will be available soon

Detectability of lines of lighter elements is reduced? Yes, but, science with Si – Fe K lines is still alive !

![](_page_24_Picture_0.jpeg)

### 3. Collaboration with XRISM - GO program -

![](_page_25_Picture_0.jpeg)

### **Nominal Operations Phase**

![](_page_25_Figure_2.jpeg)

# PV Target, In-orbit calibration Target

News & An About XRIS Proposer Observers Analysis Helpdesk Useful links

#### https://xrism.isas.jaxa.jp/research/proposer/approved/index.html

![](_page_26_Picture_2.jpeg)

| Home                 | PV T                            | argets                                                                                                                                                                                                                                                                          |                                                                 |                                                                   |                                 |                                 |  |  |  |
|----------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|---------------------------------|--|--|--|
| News & Announcements |                                 | angeto                                                                                                                                                                                                                                                                          |                                                                 |                                                                   |                                 |                                 |  |  |  |
| About XRISM          | Following the (PV) Phase.       | e successful comm<br>The goal of this ph                                                                                                                                                                                                                                        | issioning of spacecraft and pay<br>ase is to showcase the XRISM | load, XRISM will undergo a 6-r<br>transformational science, while | nonths Perform<br>providing the | ance Verification<br>scientific |  |  |  |
| Proposer             | community v<br>all its scientif | community worldwide with a comprehensive set of experiments thoroughly verifying the capability of the mission to fulfill<br>all its scientific goals.<br>Data of the PV phase observations are reserved to the members of the XRISM Science Team, as well as to a small number |                                                                 |                                                                   |                                 |                                 |  |  |  |
| Observers            | Data of the F                   |                                                                                                                                                                                                                                                                                 |                                                                 |                                                                   |                                 |                                 |  |  |  |
| Analysis             | of "XRISM G<br>public followi   | of "XRISM Guest Scientists" to be appointed by the XRISM Participating Agencies by the end of 2021. Data will be made<br>public following the rules holding for all XRISM proprietary data.                                                                                     |                                                                 |                                                                   |                                 |                                 |  |  |  |
| Helpdesk             |                                 |                                                                                                                                                                                                                                                                                 |                                                                 |                                                                   |                                 |                                 |  |  |  |
| Useful links         | Category                        | Target                                                                                                                                                                                                                                                                          | Target position                                                 | Exposure                                                          | Priority                        | Remarks                         |  |  |  |

![](_page_26_Picture_4.jpeg)

![](_page_26_Picture_5.jpeg)

| ouncements | Calibr                 | Calibration |                 |      |                                                                                     |  |  |  |
|------------|------------------------|-------------|-----------------|------|-------------------------------------------------------------------------------------|--|--|--|
| м          |                        | Target po   | Target position |      |                                                                                     |  |  |  |
|            | Target                 | RA          | Dec             | (ks) | Notes                                                                               |  |  |  |
|            | 1ES 0033               | 8.968       | 59.834          | 75   |                                                                                     |  |  |  |
|            | E 0102                 | 16.009      | -72.031         | 60   |                                                                                     |  |  |  |
|            | Perceus<br>Cluster cal | 49.951      | 41.512          | 60   |                                                                                     |  |  |  |
|            | HR 1099                | 54.197      | 0.587           | 50   |                                                                                     |  |  |  |
|            | NGC 1550               | 64.908      | 2.410           | 100  |                                                                                     |  |  |  |
|            | Capella                | 79.172      | 45.998          | 258  | Raster scanning over the f.o.v.                                                     |  |  |  |
|            | N 132D                 | 81.258      | -69.650         | 50   |                                                                                     |  |  |  |
|            | AB Dor                 | 82.187      | -65.449         | 100  |                                                                                     |  |  |  |
|            | Crab                   | 83.633      | 22.015          | 78   | Includes 1-degree off-axis observation, with pointing to be determined by XMA team. |  |  |  |
|            | Abel 1060              | 159.174     | -27.524         | 100  |                                                                                     |  |  |  |
|            | 3C 273                 | 187.278     | 2.052           | 150  |                                                                                     |  |  |  |
|            | Abell 2029<br>center   | 227.734     | 5.744           | 10   |                                                                                     |  |  |  |

Some are dropped in GVC

#### Please check your favorite objects !

![](_page_27_Picture_0.jpeg)

# **Guest Observation Program**

- GO Proposal submission is now open (due: 4 April 2024).
  - Call for observations starting Aug 2024, for 1 year.
  - Pointing observation with 10 300 ksec exposure.
  - Time critical proposal, ToO observation with known RA, DEC.
  - See detail

https://xrism.isas.jaxa.jp/research/proposer/announcement/index.html

Proposal opens at JAXA (48%)/NASA(44%)/ESA(8%).
 Please submit your proposal to the country of your institute.

Please feel free to contact the XRISM JAXA helpdesk, if you have questions. https://xrism.isas.jaxa.jp/research/helpdesk/format/index.html

# 4. Examples of expected results

- Ongoing PV observations of galaxy clusters -

![](_page_29_Picture_0.jpeg)

# Clusters of galaxies

- Most massive objects in the Universe
  - Dark matter (~80%), intracluster medium (ICM; ~15%), galaxies (~5%)
- Mass: 10<sup>13-15</sup> M<sub>o</sub>
- Scale: ~Mpc
- XRISM observes the ICM
  - Diffuse
  - High temperature (~2-10 keV)
    - Not much affected by the closed Gate Valve

![](_page_29_Picture_10.jpeg)

Coma cluster

NASA

![](_page_30_Picture_0.jpeg)

# Virgo cluster

### Nearby cluster

- Large apparent size allows for spatially resolved observations
- Complex gas Motions associated with AGN activity
  - Doppler line shift and broadening
  - AGN feedback
- Spatial distribution of chemical composition of ICM
  - Mixing of metal-rich gas in the central galaxy (M87) with the ICM by AGN activity

#### Central region of the Virgo cluster

![](_page_30_Figure_10.jpeg)

FOVs of XRISM (Resolve) on a Chandra image

![](_page_31_Picture_0.jpeg)

### Coma cluster

- Nearby massive cluster
  - Merging cluster
  - Violent gas motion is predicted
- Radio Synchrotron emission from the entire cluster
  - Turbulent acceleration of cosmic rays?
    - Electrons are accelerated in the process of being scattered by turbulence
  - We want to do more than detect turbulence
    - Energy spectrum of turbulence
    - Relationship between spatial scale and turbulence energy

#### Central region of the Coma cluster

![](_page_31_Picture_12.jpeg)

FOVs of XRISM (Resolve) on a XMM-Newton image

![](_page_32_Picture_0.jpeg)

# Perseus cluster

- We observed it with Hitomi, but...
  - We observed a very small portion
  - Large and bright
- There is still more to investigate
  - Origin of gas motion, turbulence
    - AGN? galaxy cluster collisions?
    - From spatial distribution of turbulence
  - Relation between cosmic ray acceleration and turbulence
    - Spatial correlation between radio emission and turbulence
  - Detailed elemental compositions
    - Type of supernova
  - Charge exchange reactions
    - Electron exchange between ions and neutrals
    - Cold gas

#### Hitomi collaboration (2016)

![](_page_32_Figure_17.jpeg)

#### Central region of the Perseus cluster

![](_page_32_Picture_19.jpeg)

FOVs of XRISM (Resolve) on a Chandra + radio image

![](_page_33_Picture_0.jpeg)

# Centaurus cluster

- High metal abundance
  > 1 Z<sub>o</sub>
  - Past active supernova explosions in the central galaxy
- Metal abundance drop at the center
  - Consumption by dust formation?
- Detailed metal abundance ratio observations
  - Reveals dust formation, chemical evolution, and supernova types

![](_page_33_Figure_8.jpeg)

#### Central region of the Centaurus cluster

![](_page_33_Picture_10.jpeg)

(Sanders et al. 2016)

FOVs of XRISM (Resolve) on a Chandra image

![](_page_34_Picture_0.jpeg)

# Abell 2029 cluster

- Galaxy clusters are used in cosmology
  - Cosmological parameters can be derived from the mass function
  - When determining mass in X-rays, hydrostatic equilibrium (gas is hardly moving) is assumed
    - Is this true?
- Abell 2029 is a galaxy cluster that does not seem to be merging
  - How correct is the hydrostatic equilibrium assumption?
    - Doppler shift/broadening
    - Pay particular attention to the outer edge of the cluster

Abell 2029

![](_page_34_Figure_11.jpeg)

FOVs of XRISM (Resolve) on a XMM-Newton image

### Please stay tuned!