Neutrinos

as a multi-messenger astrophysical signal

- from keV to ZeV -

Yusuke Koshio Okayama University

Il Synergies at new frontiers 25-26 March, 2024 Kashiwa, Chiba, Japan

Astrophysical neutrinos observed so far

High-energy astrophysical neutrino

March 26, 2024

Neutrino sources

Neutrino detection

II Synergies at new frontiers

Multi-messenger targets

II Synergies at new frontiers

Various detectors with wide energy range

arXiv 2203.08096

High-energy astrophysical neutrinos

Why high energy neutrinos?

II Synergies at new frontiers

Neutrino generation

IceCube

March 26, 2024

Cosmic background radiations

arXiv 2203.08096

Right Ascension

2A vs γ-ray Blazar TXS0506+056 log(Frequency [Hz]) 30 10 18 22 26 28 Optical photons 10^{-10} Neutrino HEγ $E^2 dN/dE \left[erg cm^{-2} s^{-1} \right]_{-0}$ 5.0 PKS 0502+04 3FHL 0 3FGL 4.6° 10-12 Radio 78.4° 78.0° 77.6° 77.2° 76.8° 76.4° **Right Ascension** В X-ray VHEr 6.6° 10^{-13} Archiva SARA/UA INTEGRAL (UL) VERITAS (UL) 6.2° VLA Swift UVO Fermi-LAT HAWC (UL) MAGIC significance $[\sigma]$ 4 OVRO ASAS-SN AGILE Neutrino - 0.5yr Kanata/HONIR Swift XRT MAGIC Declination .8[.]5 Neutrino - 7.5yr 10^{-14} Kiso/KWFC NuSTAR H.E.S.S. (UL) 10^{-6} 10^{-3} 10^{0} 10^{3} 10^{6} 10^{9} 10^{12} 1015 TXS 0506 Energy [eV] 5.4° 0 Science 361, 1378 (2018) 5.0° PKS 0502+049 -2 -3 4.6° 78.4° 78.0° 77.6° 77.2° 76.8° 76.4°

First signal from steady source

From the galactic plane

Science 380, 1338 (2023)

From the galactic plane

Science 380, 1338 (2023)

Future neutrino telescope

More and more neutrino signals!

March 26, 2024

Supernova neutrinos

SN1987A

Optical (Feb. 24 1:30~4:30 (UTC)) First observation in Feb. 23-24

by optical telescope in Chile

Neutrino (Feb. 23 7:35 (UTC)) Published paper by Kamiokande on March. 7

If a nearby supernova happens now...

March 26, 2024

Supernova as 'Multi-physics' object

Multi-messenger emission

Super-Kamiokande with Gd

March 26, 2024

Super-Kamiokande with Gd

Target of the early alert

Other topics -> Lluis's presentation

pre-SN neutrinos

Significance $[\sigma]$

March 26, 2024

SNEWS

Combining signals from the detectors around the world for a high-confidence prompt alert (~a few seconds)

March 26, 2024

GW coincidence

ApJ 811, 86 (2015)

March 26, 2024

Future neutrino detectors

JUNO

Hyper-Kamiokande

One supernova nearby galaxy!

gies at new frontiers

Summary

- Neutrino is the important role of multi-messenger astronomy.
- High-energy astrophysical neutrinos are key for understanding the energetic mechanisms in the universe. IceCube is successful to detect several signals, and provided the important information.
- Several neutrino detectors are waiting the next supernova nearby galaxy. Once it happens, the core-collapse mechanism will be well understood.