a) 3D PIC simulation of the global pulsar magnetosphere
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b) magnetic reconnection in the plasmoid

unstable current sheet (slice from global 3D PIC)

d) intermittent polar cap discharge (2D PIC)
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THEORETICAL CARTOON: GJ MODEL
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THEORETICAL (AND NUMERICAL) APPROACHES

Magnetized plasma without inertia

v/ OK in highly magnetized regions

- breaks when the existence of plasma is not a given, and in
reconnection

* typical apps: neutron star magnetospheres, jets

Plasma as an ideal collisional fluid

\/e.g., no thermal conduction, pressure is same in all
directions; OK as a first approximation for global dynamics

- does not describe non-thermal particles

* typical apps: accretion flows

First-principles description for collisionless plasmas

v includes non-ideal effects (e.g., pressure is different along
and across magnetic field, heat flux), describes particle
acceleration

- computationally expensive and usually allows limited
dynamic range

* typical apps: plasma instabilities, magnetospheres




STANDARD PULSAR

Force-free paradigm

7}
pCE+jXB=/ I/paéure,andE-B=O
dt > Jj=jE,VXE,V-E B,V XB)

+ Maxwell’'s equations

llllllllllll

» closed-/open-field-line regions

e equatorial current sheet

* field lines are asymptotically radial
* predicts the spin-down law

//i2Q4

Lpsp =k, (1 + k, sin* a)

* can not predict: particle acceleration, plasma
supply, non-thermal radiation

Contopoulos+ (1999), Spitkovsky (2006), Kalapotharakos (2009), Petri (2012),
Tchekhovskoy+ (2014) (MHD)
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PLASMA PHYSICS ON A COMPUTER: (GR)(R)PIC

° Solving Maxwell’s equations on the grid

E, B

(GR) = general relativistic
(R) = radiation reaction force, photon emission, multiple pair production mechanisms
PIC = particle-in-cell



MAGNETOSPHERIC STRUCTURE AND
HIGH-ENERGY EMISSION



(GR) OBLIQUE ROTATOR WITH PAIR PRODUCTION

Philippov, Spitkovsky, 2018 (ApJ)
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4/?\ self similar plasmoid chain

* Non-stationary discharge
powers coherent radio
emission.

* Relativistic magnetic
reconnection Iin the current
sheet powers high-energy
emission. Its rate controls
the radiated power.

e Current sheet is unstable to
plasmoid (tearing) and drift-
Kink Instabillities.

Hakobyan, Philippov et al., 2019 (ApJ)

(and many others after Loureiro et al., 2007)
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GAMMA-RAY EMISSION MODELING

Simulations prefer current sheet as a
particle accelerator

Particles radiate synchrotron emission
Observe caustic emission

Predict gamma-ray efficiencies 1-20%
depending on the inclination angle and
pair production efficiency in the sheet

Higher inclinations are less dissipative

=30 - Phase=0.00 - Positrons -

Lightcurve
1.0
0.8
0.6
0.4
0.2

0.0
00 02 04 06

Phase

Cerutti, Philippov, Spitkovsky, 2016 (MNRAS); Philippov, Spitkovsky, 2018 (ApdJ)

0.8

1.0




W. Counts / bin

W. Counts / bin

LIGHTCURVES

FERMI
FrrrJrrrrrrr? L L L B B rrr oo 1.2 ¢=90°
8000— > 0.1 GeV H=175202  J0633+1746, P49.2371s et
B T =110}

]

]

6000

:

2000

llIllIlIll

., Double-peaked lightcurves
130~ 5 0.1 Gev H=4858 J0633+0632, PE0.2974s -1 | | | —w | gre generic

h — (=100°
¢ =110°

0.2 |
01f \\ /_/ \A - Philippov, Spitkovsky, 2018 (ApJ)
0.0 ' ‘ '

0.0 0.2 0.4 0.6 0.8 1.0




RECONNECTION IN PULSAR MAGNETOSPHERES

B~ 10°G, ¢ = B?*/(4np,c?) > 1

Reconnection electric field accelerates particles,
synchrotron cooling is important on the same
timescale

Pairs accelerate beyond the radiation reaction
limit, upto y ~ few X o

Highest energy photons are beamed along the
upstream magnetic field, consistent with the
beaming of GeV lightcurves

h,.. ~ 16 MeV - (a/ ysyn)

Chernoglazov, Hakobyan, Philippov, 2023 (ApJ)




NEW FRONTIER: MULTI-TEV FROM VELA PULSAR [IN PREP]

The H.E.S.S. Collaboration, Nature (2023)

H.E.S.S. mono
Vela pulsar (P2) _—

| ~ 10° ~ 7
10‘9—: 7 Il H.E.S.S. stereo ysyn i 10 : O ~ feW X 10

+ Fermi-LAT T

10-10 =
E-—-—-o--o--o-'.""‘-o-.....“
: Crab pulsar (P2) ‘:C'Q'\ 2() TeV — .
N " Eph = 16 MeV - | o/ Ysyn
‘?‘g —
i:’ 107 5 CR/IC
% e |, " 23 x 107
W

{| = Y™ * 7 x 107

103 | == |C=Vmaxﬁ7x107

m,c%y, . =mc’o ~ 10 TeV

SR/IC
|| e 11,z Y™ 21,3 x 10°

10-14_§ el sy 108
[ ====n,:y™*=10", r,~10 . . . ) ) |
u * Pair density is low because "return”-current discharge sends
" USRS N R most of the plasma into the star
Energy (GeV)
Bransgrove et al, 2023 (ApJL)  Most of the plasma is produced in the current sheet

R, =, Prediction: CTA will see moderately energetic y-ray pulsars as

multi-TeV sources




NEW FRONTIER: MULTI-TEV FROM VELA PULSAR [IN PREP]

~ 100 = o~ fewx 10’

T

e =16 MeV - (a/ysyn>

/syn

m,c?y . =mc’c ~ 10 TeV

* Pair density is low because "return”-current discharge sends
most of the plasma into the star

 Most of the plasma is produced in the current sheet

Prediction: CTA will see moderately energetic y-ray pulsars as
multi-TeV sources




RADIO EMISSION



POLAR RADIO EMISSION

Lyne, Manchester (1988)
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HINTS FROM GLOBAL SIMULATIONS

> Non-stationary discharge drives waves in
the polar region.

> Waves are generated during the process
of electric field screening. They are
driven by collective plasma motions,
thus, coherent (see also Beloborodov 2008;
Timokhin, Arons 2013).

Philippov et. al. (2015)



LOCAL SIMULATION OF 2D DISCHARGE

n+ E”

R,./2

* Intermittency of the discharge results in
production of coherent currents that are
"screening” the electric field

0 B, —(B,) » Obligue "screening" waves are
electromagnetic and superluminal; thus,
can escape from the magnetosphere

» The power if fixed at ~ 10_4Lsd

—Rpc/2
R_/2 See also Cruz et. al., 2021,

pe Philippov, Timokhin, Spitkovsky, 2020 (PRL) Bransgrove et. al., 2023 (ApJL)



SPECTRUM OF A 1D DISCHARGE

 Power cascades to a maximum plasma frequency in the cloud

* Clearly a very broad-band mechanism
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Prediction: close-by young pulsars should be ALMA sources
Tolman, Philippov, Timokhin, 2022 (ApJL)



CONFIRMATION WITH DIFFERENT NUMERICAL CODES
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CRAB RADIO EMISSION
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GIANT PULSES FROM RECONNECTION
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Philippov, Uzdensky, Spitkovsky, Cerutti, 2019 (ApJL)

Current sheet breaks into plasmoids, plasmoids merge, EM waves
are emitted.

Amount of magnetic energy stored in a single plasmoid controls
the brightness temperature. Can explain Tz ~ 10°°K!

Plasmoid sizes set the frequency. Size is controlled by the strength
of the radiative cooling, resultinginv ~ cI'/l ~ 1 GHz - B63/2.
Requires MGs B-field strength at the light cylinder. Mergers of big
plasmoids produce pulses with duration 7 ~ 10/v .

Prediction: some correlation with the X-rays, also produced by
reconnection.

Similar waves exist in 3D, work in progress.
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BEYOND PULSARS



APPLICATION TO FRBS: MAGNETIC EXPLOSIONS
Large eruptions Mild eruptions

Magnetic field

Low frequency -
hulse (LFP) "

Potentially applicable
to X-ray and FRB

from galactic
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High-amplitude FMS

radiation is not free to leave.

Quiescent magnetosphere:
formation of shocks
(Beloborodov 2023).

More likely: surfing

electromagnetic explosions.

Non-linear wave
Interactions:

e F <> A+A
e F <> A+F

Fast Wave Periods

FRB / GP PROPAGATION

Fast Modes

Alfven Modes

Mode Energy




FUTURE i
1D gap approximation
LC pair production
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FUTURE

1.5

* Pair production in 3D
* Old and Millisecond

jm/jGJ ,'

rulsars * e N A Pras

* Variablility: nulling, 19
thunderstorms, raindrops, £ o
drifting subpulses

* Other bands: optical, X-ray, sl
etc.

stellar surface




MAGNETAR M AGNETOSPHERES
t=0.00 t=0.00 t=0.00

™ N L e —
—0.10-0.05 0.00 0.05 0.1010 104 107! 10° 10— 1074 10"1

Bt Atmospheric n + Pair-produced n +
* Ongoing: RICS pair-production

: : : Mahlmann, Philippov, Beloborodov et. al.
* Near-term: inclusion of QED processes for strong fields



Conclusions and outlook

1. Origin of pulsar emission has been a puzzle since 1967 - kinetic plasma simulations
are finally addressing this from first principles.

2. Current sheet is an effective particle accelerator. Particles in the sheet emit
powerful gamma-ray mainly via synchrotron mechanism. Highest energy TeV
photons can be produced in the current sheet as well.

3. Low altitute radio emission is produced during non-stationary discharge at the
polar cap, not a plasma instability in the uniform plasma flow. Giant pulses and

nanoshots are powered by plasmoid mergers in the currrent sheet beyond the light
cylinder.



PULSARS AND NICER

J0030+0451

0.6 0.8 1.0 1.2
Rotational phase [cycles]

RILEY ET AL., 2019



PULSARS AND NICER

————

(Concentric single-temperature
with antipodal symmetry)

of parameters to describe. The inferred mass M and equatorial radius R., are, respectively, 1.341912 M, and
12.71*1-15 km, while the compactness GM /Reqc2 = 0.1561 9070 is more tightly constrained; the credible interval

bounds reported here are approximately the 16% and 84% quantiles in marginal posterior mass.



