Credit: DESY, Science Communication Lab

Very Bright Gamma-Ray Burst Early Afterglow from Magnetic Bullet

This research is motivated by

Kusafuka et al. (2023)

← Check it !!!

Yo Kusafuka

ICRR, the University of Tokyo, PhD1

Collaborator: Katsuaki Asano (ICRR)

Index

Magnetic Bullets

- Basic Concept
- **Impulsive Acceleration**

Numerical Simulation

- 1D SRMHD Simulation
- 1 Zone Synchrotron/SSC Radiation

Semi-Analytic Modeling

- Case 1: ISM
- Case 2: Wind

Relativistic Jets from Compact Objects

Still high- σ in afterglow phase?

Credit: NASA

Expectation

Magnetic Bullet

Bright Early Afterglow

Index

Magnetic Bullets

- Basic Concept
- Impulsive Acceleration

Numerical Simulation

- 1D SRMHD Simulation
- 1 Zone Synchrotron/SSC Radiation

Semi-Analytic Modeling

- Case 1: ISM
- Case 2: Wind

Fundamental Equations

1D Special Relativistic MHD system equations $\cdot \frac{\partial \rho \Gamma}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} r^2 (\rho \Gamma v_r) = 0$: Mass $\frac{\partial \tau}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} r^2 (w \Gamma^2 v_r - \rho \Gamma v_r) = 0 : \text{Energy}$ $\frac{\partial S}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} r^2 (w \Gamma^2 v_r^2 + p) = \frac{2p}{r} \qquad : \text{Momentum}$ $\cdot \frac{\partial B_{\theta}}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r(B_{\theta} v_r) = 0$: Induction $\cdot p_q = (\hat{\gamma} - 1)(\epsilon - \rho)$: EoS $\tau = w\Gamma^2 - p - \rho\Gamma$: total energy density $S = w\Gamma^2 v_r$: momentum density $w = \varepsilon + p_g + 2p_m$: total enthalpy ρ , p_g , p_m , ε : comoving mass density/gas pressure magnetic pressure/energy density

Results

1DSRMHD code (Kusafuka & Asano in prep)

- •7th order MP7 (Suresh & Huynh 1997)
- 3rd order **SSPRK(3,3)** (Gottlieb & Shu 1999)
- •AMR (Berger & Oliger 1984)
- Moving window (Mimica et al. 2004)

Assumptions

- $\epsilon_e = 0.1, \epsilon_B = 0.01$ are constant
- •FS position is at gas pressure maximum

Mass density [erg/cc] / Gas pressure [erg/cc] $\sigma = 0.01$ $\sigma = 0.1$ 10² 10^{2} 10° 10° 10¹ 101 10^{-2} 10^{-2} 100 100 10^{-4} 10^{-4} $10^{-1} \ 10^{-6}$ 10⁻⁶ 0.5240 0.5255 0.5245 0.5250 0.5245 0.5250 $\sigma = 10$ $\sigma = 1$ 10² 10^{2} 10^{0} 10^{0} 10¹ 101 10^{-2} 10^{-2} 100 100 10^{-4} 10^{-4}

 10^{-1} 10^{-6}

Radius [R_{dec}]

0.5250

0.5255

0.5255

0.5250

 10^{-6}_{-5245}

time = 00077000 s

Lorentz factor

Magnetization

9

0.5260 10-1

BM phase

 $\Gamma_{BM} \propto t_{MHD}^{-3/2} \propto t_{obs}^{-3/8}$

Transition phase

Forward Shock Evolution

Coasting phase

Electron Energy Distribution

Observed Spectrum

- Early phase
 - $\gg \sigma, \ll \Delta$ is high luminosity
- Middle phase
 - $\gg \sigma, \ll \Delta$ is high luminosity
- Late phase
 - Independent of initial σ , Δ

Lightcurve

- Coasting phase
 - $\nu F_{\nu} \propto t_{obs}^3$ for radio/optical/X-ray
 - $\nu F_{\nu} \propto t_{obs}^4$ for gamma-ray
- Transition phase
 - $\nu F_{\nu} \propto t_{obs}^{\alpha}$, $\alpha = 0.5 \sim 2$
- Blandford-McKee phase
 - $\nu F_{\nu} \propto t_{obs}^{1}, t_{obs}^{-3(3-p)/4}$ for radio
 - $\nu F_{\nu} \propto t_{obs}^{-3(3-p)/4}$ for optical/X-ray
 - $\nu F_{\nu} \propto t_{obs}^{-3(2p-3)/4}$ for gamma-ray

Index

Magnetic Bullets

- Basic Concept
- Impulsive Acceleration

Numerical Simulation

- 1D SRMHD Simulation
- 1 Zone Synchrotron/SSC Radiation

Semi-Analytic Modeling

- Case 1: ISM
- Case 2: Wind

Brightness [mag_{AB}]

Semi-Analytic Model of Magnetic Bullet

Based on our simulations (preliminary) (Kusafuka & Asano in prep, KOA in prep)

$$\Gamma_{FS} \propto \begin{cases} t^{\beta} & t < t_{acc} \\ t^{-\alpha(\sigma_0)} & t_{coast} < t < t_{BM} \\ t^{-\frac{3-k}{2}} & t > t_{BM} \end{cases}$$

The timescales depend on σ_0 , Δ_0 , Γ_0 (secret, I'm sorry)

