

Intergalactic magnetic field constraints with VHE-bright GRBs

Ie. Vovk ICRR, University of Tokyo, Japan

The extreme Universe viewed in very-high-energy gamma rays 2023, 19.02.2024, Kashiwa

Intergalactic Magnetic Field: hidden window to the early Universe

It is generally assumed, that the B-fields in modern galaxies result from amplification of some weaker field (Kronberg '94, Grasso & Rubinstein '01).

IGMF – a possible "seed" field for astrophysical dynamos, filling most of the Universe volume.

Origin of IGMF

"Cosmological" Fills 100% of the Universe

"Galactic"
(small z)
Filling factor: unknown

Cosmological IGMF

Neronov & Semikoz '09

Generation:

- ✓ QCD phase transitions: ~10⁻¹² G
- ✓ electroweak phase transitions: 10⁻¹¹ G
- ✓ recombination: ~10⁻⁹ G

May explain:

- ✓ Baryonic assymentry (BAU)
 Transfer of hypermagnetic helicity to baryon number
 (e.g. Giovannini & Shaposhnikov 1998; Fujita & Kamada 2016;
 Kamada & Long 2016)
- ✓ **Hubble constant tension between CMB and BAO**Enhanced recombination rate due to IGMF-induced small-scale matter inhomogeneities (Jedamzik & Pogosian 2020)

Galactic IGMF

- Vorticity in protogalaxies during the radiation-dominated era can produce fields as strong as 10⁻¹⁹ G.
- Biermann battery effect operating in protogalaxies can also lead to the production of $\sim 10^{-17}$ G field on large (megaparsec) scales.
- Durrive battery may generate ~10⁻¹⁹ G field on sub-Mpc scales during the epoch of reionization
- Stellar evolution (with account for the Biermann battery effect) can also produce a B-field inside the young galaxy.
- AGN are also promising sites for the magnetic field to be born and amplified.
- Cosmic-ray-driven currents in young galaxies can also be responsible for the creation of the magnetic fields.

Widrow '02, Miniati & Bell '11, Garaldi+ '20

Supernovae-driven outflows

Up to \sim 20% of the space could be magnetized by outflows at z=3

Cosmic rays may also generate 10⁻¹⁷G IGMF on kpc scales with large volume filling factor (Miniati & Bell '11)

AGN-driven outflows

~ 80% of the space could be magnetized by outflows

Other models suggest 10⁻¹⁰ G IGMF on Mpc scales with ~20% volume filling factor (Furlanetto & Loeb '01)

IGM magnetization: modern view

- Multi-resolution MHD simulations with radiation transfer with the 25-70 Mpc box.
- Galactic IGMF amplification at z~4
- Gradual build up of SNe-generated field
- Magnetization with "batteries" is subdominant compared to SNe

IGM magnetization: modern view

Aramburo-Garcia+ '21

- Magnetized (B>10⁻¹² G) outflow-driven "bubbles" surrounding AGNs
- Large regions of unperturbed (cosmological) IGMF

Difficult to differentiate between the cosmological and galactic IGMF contributions

Why IGMF constraints are important?

Intergalactic magnetic field (IGMF) – a hidden window to the early Universe...

1. Baryonic assymetry of the Universe (BAU)

Transfer of hypermagnetic helicity to baryon number (e.g. Giovannini & Shaposhnikov 1998; Fujita & Kamada 2016; Kamada & Long 2016)

2. Hubble constant tension between CMB and BAO

Enhanced recombination rate due to IGMF-induced small-scale matter inhomogeneities (Jedamzik & Pogosian 2020)

...and local propagation effects

3. Ultra high-energy cosmic rays anisotropy

Combination of the large-scale structure and magnetic horizon in CR propagation (Globus+ 19)

However, IGMF origin / properties remain uncertain

IGMF measurements through gamma-ray data

VHE γ rays from cosmological distances are subject to partial absorption and cascading, converting multi-TeV photons into a secondary γ-ray "pair echo"

The presence of non-negligible IGMF leads to appearance of extended – and delayed – "echo" / "halo".

(Plaga '95, Neronov & Semikoz '09)

Observational properties of the IGMF-modified cascades

"Smoking gun": extended halo

Size and shape depend on IGMF strength and source parameters (jet opening and orientation).

Delayed emission

The delay is set by IGMF, but light curve shape may also depend on the jet parameters.

New spectral components

Depend on IGMF, source spectrum, jet orientation.

IGMF searches: "halos" and "echos"

IGMF effect

Spatially-extended "halo"

(e.g. Aharonian+ '94, Plaga '95, Neronov & Semikoz '09, Neronov+ '10)

- "Smoking gun" for IGMF
- Sensitive to strong fields (B>10⁻¹⁶ G)
- Time delay: $10^3 10^7$ yr (source variability?)
- Targets: AGNs (deep exposures)

Time-delayed "echo"

(Razzaque+ '04, Ichiki+ '08, Murase+ '08, Takahashi+ 08, Neronov & Semikoz' 09)

- Energy / time dependency is IGMF-specific
- Sensitive to IGMF $10^{-20} 10^{-17}$ G
- Targets: GRBs (TeV-bright) and AGNs (long-term monitoring)

IGMF constraints from blazar observations

Fermi/LAT measurements

(Neronov & Vovk '10, Tavecchio+ '10, Dermer+ '11, Dolag+ '11, Taylor+ '11, Vovk+ '12, Finke+ '15, Acciari+ '23)

are complemented by **IACTs**

(Aharonian+ '01, Aleksic+ '10, Abramowski+ '14, Archambault+ '17).

These are IGMF constraints at z~0.1

These limits are based primarily on halo non-detection ("smoking gun").

Accumulated time series on AGNs and TeV GRB detections now enable also time-delayed "echo" searches.

Figure adapted from Durrer & Neronov '13 with the models of Miniati & Bell '11, Furlanetto & Loeb '01 and Bertone+ '06

Looking for the time-delayed "echo"?

1

Except if "halo" is detected, limits from its non-detection depend on the assumed source flux in the past.

E.g. time delay scaling with halo size at $z \sim 0.14$ is

$$T_d \simeq \theta^{-2} D_A \simeq 1(\theta / 10^{-3} deg)^2 yr$$

—

Reliable limits – knowledge of the variability history

(2)

Next "important" IGMF constraints require z>1

BUT: strong EBL absorption → limited number of the detectable persistent emitters

Disentangle galactic / extragalactic IGMF origin

GRBs / flaring AGNs to search for IGMF "echo"?

But:

- intrinsic time delay may be $\Delta t \sim 10^2$ - 10^4 s \rightarrow strong suppression (GRB) (Razzaque+ '04, Ichiki+ '08, Takahashi+ '08, Murase+ '08/09)
- required accuracy ε = cΔt/d ~ 10⁻¹⁷,
 while double-precision floating-point type has ε~10⁻¹⁶
 → modern simulation packages (CRPropa, CRBeam, ELMAG) may not be suitable

Intrinsic time delay of the electromagnetic cascade "echo"

Time delay = (primary+electron+secondary) travel time - direct light propagation time

Intrinsic angular spread of cascade

Variability of the "main" IGMF blazar – 1ES 0229+200

MAGIC collaboration + '23

Decade-long observational campaign with HESS, VERITAS, MAGIC and Fermi/LAT allow to properly probe for the "echo" signal with AGNs

Primary source for IGMF constaints - 1ES 0229+200 - is found variable in TeV energy band

Indications already in the older H.E.S.S. and VERITAS data. However, no significant spectral variability in the VHE band.

MAGIC has contemporaneous measurements with Fermi/LAT

Variability even in MAGIC data themselves

More reliable TeV-GeV comparison

As TeV data are mostly "halo-free", one can relax the "no variability" assumption and predict the GeV cascade exactly matching the source flux in TeV band.

Robust (?) IGMF limit from contemporaneous GeV-TeV variability

MAGIC collaboration + '23

All of previous studies were based on strong assumptions on the source TeV flux.

MAGIC observations relax assumptions on the source flux (in)stability.

Strong constraint on models of cosmological magnetogenesis – e.g. IGMF that may have been responsible for baryon asymmetry of the Universe.

Example that relevant IGMF can be measured via a detection of delayed "echo" on ~10 yr time scales. Challenging, but feasible task for Fermi/LAT and CTA.

How robust is this limit?

IGMF constraints and plasma instabilities

IGMF constraints cornerstone: beam power is dissipated via IC cooling (expected secondary emission) **An alternative:** beam power is dissipated differently and IC cooling is subdominant.

Chang+ '12 and Broderick+ '12: dissipation via the plasma instabilities (strong suppression of the secondarygamma-ray emission).

Schlickeiser+ '12: comparable energy loss on instabilities and IC (for certain beam densities half of the initial power is transferred to the turbulance).

Vafin+ '18,19: strongly condition-dependent beam energy damping on plasma instabilities

Alawashra '22: suppression of instabilities in tangled magnetic fields

Miniati & Elyiv '12: negligible beam energy loss on instabilities (non-linear Landau damping and large-scale plasma inhomogeniouties should stop the development of the instabilities).

Shalaby+ '18: limited effect of IGM inhomogeniouties on instibility growth rate

Perry & Lyubarsky '21: neglibible instabilities contribution due the loss of plasma waves resonance on IGM inhomogeneities in narrow relativistic beams

Alawashra '24: beam broadening on instability without energy loss

To be continued...

GRBs and role of plasma instabilities

IGMF constraints cornerstone: beam power is dissipated via IC cooling (expected secondary emission) **An alternative:** beam power is dissipated differently and IC cooling is subdominant.

But instabilities need time to grow

Maximal instability growth rate: $\omega_{i,max} \sim 10^{-11}$ - 10^{-7} s⁻¹ (Broderick+ '12, Alawashra+ '24)

Maximum duration for which IC dominates the cooling (Broderick+ '12):

$$\Delta t \lesssim 5.3 (1+\delta)^{1/2} \left(\frac{1+z}{2}\right)^{(11-6\zeta)/2} \times \left(\frac{EL_E}{10^{45} \,\mathrm{erg}\,\mathrm{s}^{-1}}\right)^{-1} \left(\frac{E}{\mathrm{TeV}}\right)^{-2} \,\mathrm{yr}$$

For typical blazars it corresponds to $\Delta t \sim 300$ yr.

Short-lived sources lasting for $\Delta t << \Delta t_{max} = 1 / \omega_{i,max} \sim 1$ - 100 yr may be free from instabilities by definition.

For GRBs $\Delta t \sim 10^{-9} - 10^{-4} \Delta t_{max}$

As such GRBs are the cleanest sources to extract IGMF limits from

Early GRBs "echo" searches

Early calculations were based on semi-analytical codes with approximate treatment of intrinsic and IGMF-induced beam broadening

They concluded IGMF > 10⁻²¹ G should be detectable with GRB "echo"

However, there we simply no TeV-bright GRBs known then

GRB190114C – first opportunity for pair echo detection

VHE light curve of GRB190114C \rightarrow HE "echo" prediction \rightarrow comparison to LAT

GRB190114C: "pair echo" search at late times

Dzhatdoev+ '20

First GRB190114C "echo" search employed a simplified treatment of the intrinsic beam broadening and focused at late time T - T_0 > $2x10^4$ sec emission

No "echo" signal was found, upper limits were consistent with zero IGMF case

"Echo" search within the T - T_0 < $2x10^4$ sec window required detailed calculation of the intrinstic time delay.

Calculating the intrinsic "echo" time delay

Vovk PRD 107 (2023)

$$\Delta t \approx (1+z) \left[t_e - \frac{d_e}{c} \left(1 - \frac{r_0}{d_e + r_0} \frac{\theta_e^2}{2} \right) + \frac{1}{c} \frac{r_s r_e}{r_s - r_e} \frac{\alpha_s^2}{2} \right]$$

In general "echo" follows the source light curve F(t)

Time delay [s]

$$F_{echo}(\epsilon_1, t) = \int_{-inf}^{t} F(E_{\gamma}, t') K(\epsilon_1, E_{\gamma}, t - t') dt'$$

GRB190114C: "pair echo" prediction in the zero IGMF case

Vovk PRD 107 (2023)

- Conservative "echo" estimate based MAGIC data from T – T₀ > 68 s
 - power law injection spectrum following the measured index / slope evolution
 - exponential cut off @ 1 TeV (maximal energy MAGIC has detected). → Sub-dominant contribution of E > 1 TeV emission in the 0.1-1 GeV range of Fermi/LAT measurements.
 - extrapolation to prompt phase down to $T T_0 = 5$ s. \rightarrow Early-time "echo" still consistent with measurements (if spectrum is the same).
- HE detection @ $T T_0 = 10^4$ s may be in slight tension with the $F(t) \sim t^{-1.5}$ extrapolation identified in MAGIC collaboration '19 a/b

"Pair echo" prediction for zero IGMF case is consistent with the data

GRB190114C: "pair echo" detection?

Vovk PRD 107 (2023)

1. Emission @ 10⁴ s is an "echo"?

- prompt phase VHE flux can not exceed much the $F(t) \sim t^{-1.5}$ extrapolation.
- IGMF < 10⁻²¹ G @ z ≈ 0.4 → Possible contradiction with constraints from blazars @ z ~ 0.1. Favours "galactic" IGMF origin. Inhomogenous IGMF?
- only sub-dominant role of the plasma instabilities

2. Emission @ 10⁴ s instrinsic to GRB?

- structured jets or multiple emission may result in time-delayed components (e.g. SSC peak shift as in MAGIC collaboration '19)
- if >80% of it is intrinsic \rightarrow IGMF > 10⁻²¹ G @ z \approx 0.4, in agreement with constraints from blazars.

IGMF measurements with TeV bright GRBs at z~1 are feasible

IGMF with GRB221009A – the brightest GRB to date

GRB221009A: the bightest GRB to date (nearby with z=0.15).

So bright it has saturated Fermi LAT/GBM https://fermi.gsfc.nasa.gov/ssc/data/analysis/grb221009a.html

Apparently missed by all major IACTs due to full Moon

Emission up to ~10 TeV lasting for ~2 ksec registered with LHAASO

- First GRB with detectable "echo"
- x-check to AGN-based IGFM constraints from similar redshift

Credit: NASA's Goddard Space Flight Center and Adam Goldstein (USRA)

IGMF with GRB221009A – the brightest GRB to date

Vovk+, accepted

Total "echo" flux is set by the LHAASO multi-TeV light curve / spectra

Prediction based on the intrinsic cascade scatter only clearly overshoots the Fermi/LAT measurements (no saturation after $T-T_0\sim300$ sec)

No clear indication for the IGMF-modified "echo" onset (like the one suggested for GRB190114C)

IGMF with B > 10^{-19} **G** is consistent with the data (convolution of the intrinsic cascade with the "echo" shape obtained from CRPropa)

Similar constrains also found by Dzhatdoev+ '23 and Huang+ '23, neglecting the intrinsic "echo" spread.

Independent verification of blazar-based IGMF constraints.

IGMF with GRB221009A – the brightest GRB to date

Vovk+, *submitted*

Galactic outflows may have a limited volume filling factor (Marinacci+ '18)

→ IGMF in voids is likely cosmological.

Turbulent decay of cosmological IGMF produced in EW or QCD transitions in Early Universe is $\lambda_B \sim 10^{\text{-5}}\text{-}\ 10^{\text{-1}}$ pc (Banarjee+Jedamzik '04, Hoskin+Schekochihin '22) $<< D_e \sim 0.1$ Mpc

GRB221009A limit @ small λ_B is comparable to that from blazars.

GRB IGMF limit may be also less influenced by possible plasma instabilities (due to a short duration / narrow emission shell)

GRB221009A confirms strong constraints on cosmological IGMF

Final remarks

GRB "echo" signal search – a viable tool to cross-check the IGMF constraints from balzars.

IGMF constraints with GRBs are opportunistic: we do not know where / when next bright burst will happen – example of GRB2201009A highlights the importance of ground-based instruments able to operate at "extreme" conditions.

GRBs constrain weaker IGMF compared to blazars – unless we get a second GRB2201009A event or the one with much harder spectrum – **but** they may **extend the redshift range** of IGMF constraints (z=1.1 GRB201216C detected with MAGIC)

GRB constrains seem **insensitive to plasma instabilities**. While on-going theoretical studies may eventually demonstrate the same for blazars, recent GRB observations **support the existance of strong IGMF**.