Institute of High Energy Physics Chinese Academy of Science.

Status and Recent Updates of LHAASO

On behalf of LHAASO Collaboration Institute of High Energy Physics(IHEP),CAS

天府宇宙编研究中心

Zhen Cao

CTA/LST-Japan Workshop, Kashiwa, 2024.3.

Multi-Messenger Collaboration Network

The ultimate goal is to identify origins of CRS Scientific Goals

 γ -ray astronomy:

Survey for sources (above 500 GeV) PeVatrons (above 100 TeV) All kind of sources: SNR, PWN, MYC, binary, pulsar, AGN, GRB etc.

Cosmic Ray Physics: The knees

Compositions : individual species H, He and Fe

Anisotropy: (1 TeV to 10 PeV)

New Physics Front: DM, LIV, etc.

Shower Observatory LHAASO

Cosmic Ray Origin

- After 110 years, we have learnt a lot about CRs near the Sun
- Particularly in the era of high precision measurements
- However, their origin is still an open question

Ł

There is still no clue about the origins of CRs 🥠 between the "knee" and the "ankle"

Physics Procedia 61 (2015) 425-434.arXiv:1910.03721v1

高海拔宇宙残观测站

All-particle energy spectrum & composition by LHAASO

- Systematic uncertainties are sufficiently small
- This unveils a clear correlation between the flux and the composition at the knee

LHAASO-KM2A Selection of γ–rays out of CR background

20210511/131236/0.554789897: nTrig=-1, θ=37.81±0.02°, φ=103.39±0.02°

Area:

- 78,000 m² • Detector units: 3120
- Energy Range:
 0.1-10 TeV

UHE γ-ray Astronomy: sources and diffuse emission

> Survey discovered 30+ new sources, 40+ PeVatrons and diffuse γ-ray emission

Possible Source Candidates 高海拔宇宙残观测站 W51C Crab G.C. by IACTs Crab VERITAS Fermi-LAT $E^{2} dN_{\gamma}^{-10} dE erg s^{-1} cm^{-2}$ LHAASO HESS 2018 ⊋ 10⁻¹¹ MAGIC 2020 Ś ч<u>-</u>2 dN/d Premilitary Û ■10⁻¹² LHAASO 10-14 SO log-parabola mode В δd -2.5 Index -3 10^{8} 10⁹ 10¹⁰ 10^{11} 1012 1013 1014 截图(Alt + A) 10^{-12} Energy [eV] 10^{0} 10^{1} 10-10 Energy (TeV) 10² 10^{3} 1 Energy (TeV) **SNR PWN** Other sources

Many types of sources have the potential to accelerate particles to 1 PeV and above

A&A 671, A12 (2023) Science 10.1126/science.abg5137 (2021). The Astrophysical Journal, 913:115 (11pp), 2021 June 1

The 1st CR-Source Candidate by

A Bubble of UHE γ's centered at a complex core

8 γ's above 1 PeV!

Energy (TeV)	Ne	Nu	Theta (deg)	Dr (m)
1087	5904	13	19.4	143
1188	5480	14	34.4	73
1208	6939	13	14.2	131
1350	6938	8	27.1	43
1379	6469	9	17.4	52
1421	6258	7	12.7	57
1784	6665	13	18.0	41
2481	13815	29	33.0	99

PeV Photons are scattered in the Bubble, and seem not to associate with any small scale sources

Association with HI gas distribution over ~200 pc

- The significance map is smoothed with a Gaussian kernel=1.0°
- The contour is from HI4PI 21-cm

Clear correlation with gas distribution indicating a hadronic origin of photons in the Bubble
 The signal is elongated along the disck and extends to 10°

• The significance map is smoothed with a Gaussian kernel of $\sigma=0.3^{\circ}$

• The significance map is smoothed with a Gaussian kernel of $\sigma = 0.3^{\circ}$

Spectral Energy Distribution of the Bubble

Energy Bin	Non	Nb
400TeV-630TeV	42	6.8
630TeV-1PeV	14	1.9
1PeV-1.6PeV	6	0.6
1.6PeV-2.5PeV	2	0.2

Almost background free

- The spectrum spans 3 decades up to 2 PeV
- ◆Spectral index ~ 2.7
- \bullet No indication of cut-off in the spectrum

HE Protons injection from the core region

- High energy cosmic rays escape from the accelerator in the core
- Diffusing through the H1 gas and producing γ's in p-p collisions
- Hitting on clampy molecular clouds making hot-spots
- Slow diffusion ~1%DC in ISM

Model w 3 components : SED over 8 decades

Model: Diffuse CR's generate γ's Spatial Profile over 10° from the core

- There is a large cosmic ray bubble
- A rather small propagation ecoefficiency around the source
- The size of the visible bubble depends on the level of diffuse γ-rays

The Galactic Diffuse Emission is X3 higher than the expectation

Inner Galactic Region

- Likely to be the extension of bubbles
- Cygnus bubble is a good example

Galactic Longitude [deg]

-4

Galactic Latitude [deg]

Extra-galactic sources: ~12, AGNs

GRB 221009A: The brightest of all time

- Highest fluence / peak flux (An et al. 2023)
- Nearby
- Highest energy / peak luminosity (An et al. 2023)
- Once a 1,000/10,000 yr event (Burns et al. 2023)

By Bing Zhang

Even much less chance for it in the middle of FoV of LHAASO

• The burst of 64k photons in **270 seconds** versus the exposure of the Crab for 508 days

Onset of the afterglow

- LHAASO on GRB 221009A: the 1st GRB seen by EAS detector
- Light curve: complete temporal profile at TeV
 - dominated by the external shock origin

Reference time T*

Rate [Hz]

- The reference time: $T^* \approx 225-228 \text{ s}$
- A good approximation of T* is the main burst in prompt phase (Lazzati, Zhang...)
- Fitting of LHAASO light curve:

高海拔宇宙残观测站

1. The initial bulk Lorentz Factor of the ejecta

 $R \sim 10^{15} \text{ cm}$

- From the time when the main prompt emission reaches the peak flux (~T*) to the moment when the afterglow reaches the peak, it takes
- The initial bulk Lorentz factor is estimated as

~18 s

$$\Gamma_0 = \left(\frac{3E_k}{32\pi nm_p c^5 t_{\text{peak}}^3}\right)^{1/8} = 440 E_{k,55}^{1/8} n_0^{-1/8} \left(\frac{t_{\text{peak}}}{18\,\text{s}}\right)^{-3/8}$$

10¹⁸ cm

2. Upper limit on emission in TeV band in prompt phase

• The most strict limit on the TeV prompt emission before T*

$$R = F_{TeV} / F_{MeV} < 3 \times 10^{-5}$$

As a consequence, the jet might be highly magnetized

Implying a low Compton ratio Assuming the internal dissipation radius ~10¹⁵ cm, according to the scale of variability of the prompt emission

$$Y \equiv L_{\rm SSC}/L_{\rm syn} \sim \bar{R}/(f_{\gamma\gamma}f_{\rm spec}) \leq 1.6 \times 10^{-3}R_{\rm in,15}^{-1}f_{\rm spec}^{-1}$$
$$\overline{Y} \approx Y(\gamma_m) \approx \frac{\epsilon_e}{\epsilon_B} \begin{cases} 1 & \frac{\gamma_m}{\widehat{\gamma_m}} < (p-2)^2 \\ (p-2)\left(\frac{\gamma_m}{\widehat{\gamma_m}}\right)^{-1/2} & \frac{\gamma_m}{\widehat{\gamma_m}} > (p-2)^2, \end{cases} \qquad f_{\rm KN} \sim 0.1$$

$$\epsilon_{\rm B,in} \ge 30\epsilon_{\rm e,in}$$

magnetic field energy density is much larger than the energy of relativistic electrons

Favors a magnetically dominated jet

3. Rising phase

- Synchrotron Self-Compton mechanism is implied by the broken power-law
- Light curve $\sim t^2$ favors k=0 (ISM), and

disfavors k=2 (stellar wind)

 $n \propto R^{-k}$

$$F_{\nu} = \begin{cases} F_{m}^{\mathrm{IC}} \left(\frac{\nu}{\nu_{m}^{\mathrm{IC}}}\right)^{-\frac{p-1}{2}} \propto t^{\frac{16-(9+p)k}{4}} \nu^{-\frac{p-1}{2}}, \quad \nu_{m}^{\mathrm{IC}} < \nu < \nu_{c}^{\mathrm{IC}} \\ F_{m}^{\mathrm{IC}} \left(\frac{\nu}{\nu_{c}^{\mathrm{IC}}}\right)^{-\frac{1}{2}} \propto t^{\frac{8-3k}{4}} \nu^{-1/2}, \quad \nu_{c}^{\mathrm{IC}} < \nu < \nu_{m}^{\mathrm{IC}} \\ F_{m}^{\mathrm{IC}} \left(\nu_{m}^{\mathrm{IC}}\right)^{\frac{p-1}{2}} \left(\nu_{c}^{\mathrm{IC}}\right)^{\frac{1}{2}} \nu^{-\frac{p}{2}} \propto t^{\frac{8-(2+p)k}{4}} \nu^{-\frac{p}{2}}. \quad \nu > \max(\nu_{m}^{\mathrm{IC}}, \nu_{c}^{\mathrm{IC}}) \end{cases}$$
(12)

• The fast rising: implying a free expansion with an increase of number of electrons accelerated at the external shocks

(13)

Decay phase: SSC

• Standard decaying behavior

$$F_{\nu} = \begin{cases} F_m^{\rm IC} \left(\frac{\nu}{\nu_m^{\rm IC}}\right)^{-\frac{p-1}{2}} \propto t^{\frac{11-9p}{8}}, & \nu_m^{\rm IC} < \nu < \nu_c^{\rm IC} \\ F_m^{\rm IC} \left(\frac{\nu}{\nu_c^{\rm IC}}\right)^{-\frac{1}{2}} \propto t^{\frac{1}{8}}, & \nu_c^{\rm IC} < \nu < \nu_m^{\rm IC} \\ F_m^{\rm IC} \left(\nu_m^{\rm IC}\right)^{\frac{p-1}{2}} \left(\nu_c^{\rm IC}\right)^{\frac{1}{2}} \nu^{-\frac{p}{2}} \propto t^{\frac{10-9p}{8}}, & \nu > \max(\nu_m^{\rm IC}, \nu_c^{\rm IC}) \end{cases}$$

 $dN_e/dE \propto E_e^{-p}$ $p \sim 2.1$

A fast component!

• Very fine jet structure may be revealed at VHE ?

Jet Features

- Jet structure may be revealed at VHE band
- A "jet break" at high energy, indicated by the existence of the fast decay component, could be the evidence of the narrowest beam ~1°
- 1st time to see the HE "core" of the jet

测站

Very lucky! Almost totally alimented wit the jet

Very narrow jet: GRB 221009A an ordinary burst

Ghirlanda et al., ApJ, 2004

51

[erg]

52

53

(b)

First time seeing a jet break at TeV band

 $E_{\gamma,i} = E_{\gamma,iso}\theta_0^2/2 \sim 7.5 \times 10^{50} \text{ erg} E_{\gamma,iso,55}(\theta_0/0.7^\circ)^2$

- This helps to understand why it is the BAOT GRB
- The total energy of the GRB is normal

Bloom et al. , ApJ, 2001

5. Time-sliding SEDs:

- z ~ 0.152, EBL absorption above 3 TeV
- EBL model: A. Saldana-Lopez et al., Mon. Not. R. Astron. Soc. 507, 5144-5160 (2021)
- Intrinsic SED:
 - Power law: $\sim E^{-2.3}$
 - No hint about cut-off below 10 TeV
 - Moderate spectral evolution is observed

Multi-wavelength modelling of afterglow synchrotron + SSC:

simultaneously fit light-curves in ΔE and time-sliding SEDs

 $E_k = 1.5 \times 10^{55} \text{ erg}, \Gamma_0 = 560, \epsilon_e = 0.025, \epsilon_B = 6 \times 10^{-4}, p = 2.2, n = 0.4 \text{ cm}^{-3} \text{ and } \theta_0 = 0.8^{\circ}$.

6. The most energetic photons during the burst by LHAASO-KM2A

SED in two phases: bright and fading

- The "best fit" among $E^{-\gamma}$, $E^{-\Gamma}$ ($\Gamma = \Gamma_0 + k/og(E/E_0)$) and $E^{-\gamma} \exp\{-E/E_c\}$ power-law, log-parabola and power law + cut-off
- The power law + cut-off is favored

Assumption 1: those events found at the top of the
 atmosphere are photons directly coming from the GRB at z=0.152

ASO-WCDA: 230-300s

Energy (TeV)

LHAASO-KM2A: 300-900s
 LHAASO-WCDA: 300-900s

10

4.16/9

6.12/9

5.93/9

11.33/10

13.51/10

5.57/10

15.49/19

19.63/19

11.50/19

Dominguez et al 2011

Finke et al 2010

modified Saldana

Moderate constraints to the EBL models within $1 \sim 2\sigma$

10

LHAASO-WCDA: 230-300

LHAASO-KM2A: 300-900

LHAASO-WCDA: 300-900s

Energy (TeV)

10

Assumption 2: those γ-like events found at the top of the
atmosphere may start with something else at the GRB at z=0.152

Constraints on Axion and LIV

Analysis is still going on …, but the highest energy could be 25 TeV

Heavy Dark Mater Search

- Signals of annihilation or decay of DM particles
- And good for MD in the galactic halo for m_{DM} > 200 TeV

Accepted by PRL, https://arxiv.org/abs/2210.15989

Exploring for New Physics

3 orders of

magnitudes

Planck-scale

below the

Summary

- LHAASO has been stably operating since 2021
- Diffuse photon flux is found a factor 2 or 3 higher than expectation
- 43 above 100 TeV are detected and published in catalogs w/~40% of them unidentified
- The first CR source as a super-PeVatron is found
- The BOAT GRB brings us many new views of GRB afterglow, the highest energy photon from the GRB opens opportunities exploring for new physics
- Fundamental issues, LIV and DM, are tested w/ limits renewed constantly