Potential PeV cosmic ray acceleration in the middle-aged pulsar-wind nebula HESS J1849-000

Kato Sei (加藤 勢) ICRR, Univ. of Tokyo

This study is published as Amenomori et al., ApJ 954, 200 (2023)

Introduction

Bend seen in the CR energy spectrum : Knee

- 1. Zyla et al. Prog. Theor. Exp. Phys. 2021, 083C01 (2021)
- 2. Amenomori et al., Nat. Astron 5, 460 (2021)
- 3. Cao et al., Science Bulletin 69, 449 (2024)

Gamma-Ray Sources Associated w/ Pulsar Wind Nebulae

H.E.S.S. Gal. Plane Survey¹ 20/78 sources are associated w/ PWNe

35 1LHAASO sources associated w/ PSRs² <u>15 sources w/ identified PWNe/TeV Halo</u>

Source name	PSR name	Sep.(°)	d (kpc)	τ_c (kyr)	$\dot{E} \ (\mathrm{erg} \ \mathrm{s}^{-1})$	P_c	Identified type in TeVCat
1LHAASO J0007+7303u	PSR J0007+7303	0.05	1.40	14	4.5e + 35	7.3e-05	PWN
1LHAASO J0216+4237u	PSR J0218+4232	0.33	3.15	476000	2.4e + 35	3.6e-03	
1LHAASO J0249+6022	PSR J0248+6021	0.16	2.00	62	2.1e + 35	1.5e-03	
1LHAASO J0359+5406	PSR J0359+5414	0.15	-	75	1.3e + 36	7.2e-04	
1LHAASO J0534+2200u	PSR J0534+2200	0.01	2.00	1	4.5e + 38	3.2e-06	PWN
1LHAASO J0542+2311u	PSR J0543+2329	0.30	1.56	253	4.1e + 34	8.3e-03	
1LHAASO J0622+3754	PSR J0622+3749	0.09	-	208	2.7e + 34	2.5e-04	PWN/TeV Halo
1LHAASO J0631+1040	PSR J0631+1037	0.11	2.10	44	1.7e + 35	3.5e-04	PWN
1LHAASO J0634+1741u	PSR J0633+1746	0.12	0.19	342	3.3e + 34	1.3e-03	PWN/TeV Halo
1LHAASO J0635+0619	PSR J0633 + 0632	0.39	1.35	59	1.2e + 35	9.4e-03	
1LHAASO J1740+0948u	PSR J1740+1000	0.21	1.23	114	2.3e + 35	1.4e-03	
1LHAASO J1809-1918u	PSR J1809-1917	0.05	3.27	51	1.8e + 36	6.2e-04	
1LHAASO J1813-1245	PSR J1813-1245	0.01	2.63	43	6.2e + 36	6.3e-06	
1LHAASO J1825-1256u	PSR J1826-1256	0.09	1.55	14	3.6e + 36	1.6e-03	
1LHAASO J1825-1337u	PSR J1826-1334	0.11	3.61	21	2.8e + 36	2.8e-03	PWN/TeV Halo
1LHAASO J1837-0654u	PSR J1838-0655	0.12	6.60	23	5.6e + 36	2.2e-03	PWN
1LHAASO J1839-0548u	PSR J1838-0537	0.20	-	5	6.0e + 36	6.1e-03	
1LHAASO J1848-0001u	PSR J1849-0001	0.06	-	43	9.8e + 36	1.2e-04	PWN
1LHAASO J1857+0245	PSR J1856+0245	0.16	6.32	21	4.6e + 36	3.1e-03	PWN
1LHAASO J1906+0712	PSR J1906+0722	0.19	-	49	1.0e + 36	5.9e-03	
1LHAASO J1908+0615u	PSR J1907+0602	0.23	2.37	20	2.8e + 36	6.8e-03	
1LHAASO J1912+1014u	PSR J1913+1011	0.13	4.61	169	2.9e + 36	1.5e-03	
1LHAASO J1914+1150u	PSR J1915+1150	0.09	14.01	116	5.4e + 35	1.8e-03	
1LHAASO J1928+1746u	PSR J1928+1746	0.04	4.34	83	1.6e + 36	1.6e-04	
1LHAASO J1929+1846u	PSR J1930+1852	0.29	7.00	3	1.2e + 37	2.6e-03	PWN
1LHAASO J1954+2836u	PSR J1954+2836	0.01	1.96	69	1.1e + 36	1.6e-05	PWN
1LHAASO J1954+3253	PSR J1952+3252	0.33	3.00	107	3.7e + 36	6.7e-03	
1LHAASO J1959+2846u	PSR J1958+2845	0.10	1.95	22	3.4e + 35	2.8e-03	PWN
1LHAASO J2005+3415	PSR J2004+3429	0.25	10.78	18	5.8e + 35	9.9e-03	
1LHAASO J2005+3050	PSR J2006+3102	0.20	6.04	104	2.2e + 35	9.2e-03	
1LHAASO J2020+3649u	PSR J2021+3651	0.05	1.80	17	3.4e + 36	1.5e-04	PWN
1LHAASO J2028+3352	PSR J2028+3332	0.36	-	576	3.5e + 34	8.0e-03	
1LHAASO J2031+4127u	PSR J2032+4127	0.08	1.33	201	1.5e + 35	1.0e-03	PWN
1LHAASO J2228+6100u	PSR J2229+6114	0.27	3.00	10	2.2e + 37	2.2e-03	PWN
1LHAASO J2238+5900	PSR J2238+5903	0.07	2.83	27	8.9e + 35	3.0e-04	

- $\checkmark\,$ PWNe could occupy a large fraction of VHE/UHE src.s
- ✓ Potential CR acceleration theoretically discussed^{3,4,5,6}
- 1. H.E.S.S. Collaboration, A&A 612, A1 (2018)
- 2. arXiv:2305.17030v2 (2023)
- 3. Cheng et al., ApJ 300, 500 (1986)
- 4. Zhang et al., MNRAS 497, 3477–3483 (2020)
- 5. Liu & Wang, ApJ 922, 221 (2021)
- 6. Spencer et al., PoS(ICRC2023)690

HESS J1849-000

\sqrt{TS} maps @ E > 400GeV (H.E.S.S.¹)

- ✓ PSR J1849–0001 in the center of TeV γ -ray emission
 - => Middle aged pusar-wind nebula (PWN)^{1,2}
- ✓ IntF(> 1TeV) = 2.3% Crab & Γ ~ 2.0¹
- ✓ Nearby HAWC (>56TeV)³ & LHAASO (>100TeV)^{4,5} src.s
- ! No detailed study of the origin of the γ -ray emission

H.E.S.S. Collaboration, A&A 612, A1 (2018)
 H.E.S.S. Collaboration, A&A 612, A2 (2018)
 Abeysekara et al., PRL 124, 021102 (2020)
 Cao et al., Nature 594, 33 (2021)
 Cao et al., arXiv:2305.17030v2 (2023)

Experiment & Data Analysis

- ✓ Operating since 1990
- Observation of air showers produced by CR-atm. collisions
 => Reconstruction of energy & arrival direction
- ✓ Wide F.O.V. (~ 2 sr) & high duty cycle (>90%)
- \checkmark Angular resolution : 0.2° for 100TeV γ
- \checkmark Energy resolution : 20% for 100TeV γ

Tibet air shower array

- ✓ Geometrical area : 65,700 m²
 (597 × 0.5m² scintillation detectors)
- Real-time calibration of cable lengths & sngl. peak
 => Good angular & energy resolutions

Discrimination b/w r & CR showers by counting shower muons

Survival ratio of γ & CR events after the MD cut

Analysis of the Zenith-Angle Range up to 50°

Distribution of MC gamma events (before MD cut)

- ✓ HESS J1849-000 has
 - 1. a low flux level (~2% Crab @ $E > 1 TeV^1$)
 - 2. large meridian zenith (~ 30°) & low exposure
- \Rightarrow Need for the increase of statistics by extending the analyzed zenith-angle range up to 50°

(In the conventional analysis $\theta < 40^{\circ}$)

✓ Improvement of event statistics by ~30%
 @ E > 25TeV & not deteriorating the sensitivity

Results

Detection of γ Rays from HESS J1849–000 @ E > 25 TeV

Detection of γ Rays from HESS J1849–000

Energy spectrum

- ✓ Systematic uncertainties :
 - Absolute energy scale uncertainties 12% => Normalization 27%
 - Contamination from a nearby source HESS J1852–000 => Normalization < 20% @ 95 G_6L .

Discussion

Leptonic emission model (Naima¹)

Zabalza, PoS(ICRC2015) 922 (2015)
 Porter+, ApJ 846, 67 (2017)

3. Vernetto & Lipari PRD 94, 063009 (2016)

4. Gotthelf+, ApJL 729, L16 (2011)

- ✓ First spectral modeling including the sub-PeV energy range
- ✓ Assumptions :
 - Inverse Compton scattering by e[±] following a simple PL func. :

$$\frac{dN_{\rm e}}{dE} = A_{\rm e} \left(\frac{E}{10 \,\,{\rm TeV}}\right)^{-\alpha_{\rm e}} {\rm eV}^{-1}$$

Interstellar radiation field^{2,3}
 (assuming a distance of 7kpc⁴) :

ISRF	Energy density $(eV cm^{-3})$
CMB (2.7 K)	0.26
FIR(20 K)	0.75
NIR $(3,000 \text{K})$	1.26

Lower limit on the cutoff energy of electrons

Association : PSR J1849–0001

PSR J1849–0001¹

X-ray pulsar P = 38.5 ms, $E_{sp} = 9.8 \times 10^{36}$ erg s⁻¹, $\tau_c = 42.9$ kyr Extended keV X rays(75") => Synchrotron PWN Distance : 7 kpc

- $\checkmark~\gamma$ rays is also a PWN of PSR J1849–0001??
- ✓ We(>100GeV) = 0.03 $E_{sp} \tau_c$. Energetics OK
- ✓ Synchrotron keV X-rays : Cooling effect is seen³; photon index Γ_X = -1.2 -> -1.8 as going distant from the PSR
- $\checkmark \Gamma_{X} = (-1 + \Gamma_{e}) / 2 = (-1 2.5) / 2 = -1.8$ => e[±] producing ICS γ rays are already cooled??

✓ Γ_e of e[±] before cooling : $\Gamma_e = -1.5$. Much harder than the standard shock acceleration (-2.0⁵) => Efficient acceleration by interaction b/w e[±] & shock waves^{6,7}??

Radio ~ hard X-ray obs. & high-statistics γ -ray obs. are needed to determine the e[±] spectrum

- 1. Gotthelf+, ApJL 729, L16 (2011)
- 2. Terrier+, AIP Conf. Proc. 1085, 312 (2008)
- Kuiper & Hermsen, MNRAS 449, 3827 (2015)
 Vleeschower+, Nucl. Part. Phys. Proc 297-299, 102 (2018)
- 5. Gaisser+, Cambridge Univ. Press (2016) 6. Malkov, ApJ 511, L53 (1998) 20 7. Berezhko & Ellison, ApJ 526, 385 (1999)

Hadronic emission model : Molecular cloud

- ✓ Assumed distance : 7 kpc²
- ✓ Integration in 93–100 km s⁻¹ (6-7 kpc)

=> Molecular cloud w/ ~20 pc size (T_B ~20 K km s⁻¹) @ the west side of HESS J1849–000

 \checkmark If the cloud size along the l.o.s. is ~ 20 pc, the gas density is

 $n_p = X_{co} T_{mb} / R \sim 70 \text{ cm}^{-3}$ (Xco = 2×10²⁰ cm⁻² (K km s⁻¹)⁻¹)³

> 10 cm⁻³ can be provided

Hadronic emission model (Naima¹)

1. Zabalza, PoS(ICRC2015) 922 (2015)

Possible acceleration of CR protons beyond PeV

PeV CR acceleration in a PWN-SNR composite system

✓ CRp's accelerated up to ~100 TeV in the SNR FS could be re-accelerated up to ~ 1 PeV in the PWN compressed by the SNR reverse shock^{1,2} PeV CR acceleration in a PWN-SNR composite system

- PeV CR can be produced irrespective of environmental parameters¹
- ~10⁴⁹ erg is given to the accelerated particles²
- **B** of the compressed PWN is amplified up to ~ 100 $\mu \rm G^2$
 - => compact synchrotron X-ray emission by e[±] of PWN origin??
- Compression of PWN takes place @ ~ 10 kyr aft. SN => Invisible SNR

PeV CR acceleration in a PWN-SNR composite system

- \checkmark Problems of the PWN-SNR scenario :
 - Simple PL + Exp. cutoff CR spectrum can be realized in such a complex system??
 - There should be e^{\pm} of PWN origin. γ -ray spectrum from CR + e^{\pm} ??
 - No evidence for existence of SNR => Radio obs. (gas temp., ionization degree…)
 - CRs w/ 10⁴⁹ erg can really be confined within the compressed PWN??
- ✓ Future observations :
 - Neutrino obs. w/ IceCube-Gen2³ => Constraint on γ -ray flux from hadrons
 - Accurate measurement of sub-PeV γ-ray energy spectrum

Summary

 \checkmark Obs. of UHE γ up to 320 TeV w/o clear cutoff from PWN HESS J1849–000

Detection significance : 4.0σ @ > 25TeV & 4.4σ @ > 100TeV

✓ 1^{st} spectral measurement in 40 TeV < E < 320 TeV

$$\frac{\mathrm{d}N}{\mathrm{d}E} = (2.86 \pm 1.44) \times 10^{-16} \left(\frac{E}{40 \text{ TeV}}\right)^{-2.24 \pm 0.41} \text{ TeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$$

- \checkmark Detection of ~20 pc size MC @ the west side of the src. n_p ~ 70 cm^-3
- \checkmark Leptonic scenario : ICS e[±] efficiently accelerated by PWN $\ref{eq:entropy}$ ($\Gamma_{\rm e}$ = –1.5)
- ✓ Hadronic scenario : PeV CR acceleration in a PWN-SNR composite system??
 Further theoretical & observational studies needed