

The extreme Universe viewed in very-high-energy gamma rays 2023 Vodelling the Ultrahigh-energy Emission of Lygnus Bubble

cm⁻² s⁻¹

Ruo-Yu Liu (for LHAASO Collaboration) School of Astronomy and Space Science, Nanjing University

20.02.2024, CTA-Japan Workshop 2023, Tokyo, Japan (Online)

Outline

- > A Brief Review of Previous Studies (observational & theoretical)
- Observation of Cygnus Bubble by LHAASO and Modelling
- Discussion & Summary

Introduction

Origin of Cosmic Rays

Massive stellar winds as CR accelerators

Casse & Paul 1980

DISTANCES BETWEEN THE SHOCK AND THE STAR FOR DIFFERENT KINDS OF STARS IN DIFFERENT ENVIRONMENTS

TABLE 1

Distance between the shock and the star (pc)	18	5.2	5.7	1.6
Star:				
Mass loss rate $(M_{\odot} \text{ yr}^{-1})$	10^{-5}	10^{-5}	10^{-6}	10-6
Wind velocity $(km s^{-1})$	2000	2000	2000	2000
Surrounding medium:				
Density n (particles cm ⁻³)	1	10 ³	1	- 10 ³
Temperature ^a (K)	104	20	105	20
Magnetic field strength (μG)	3	30	3	30
Cosmic ray energy density (eV cm ⁻³)	1	1	1	1
Pressure $(10^{-12} \text{ dynes cm}^{-2})$:				
Due to gas: p_q	2.8	2.8	2.8	2.8
Due to magnetic field: p_B	0.36	36	0.36	36
Due to cosmic rays: p_{CR}	0.15	0.15	0.15	0.15
Total due to ISM: p_i	3.3	39	3.3	39

Provided the acceleration is not intermittent, and in the optimum case, the highest energies that cosmic rays of charge Z can attain at stellar wind terminal shock are:

 $E_{\rm max} = 4 \times 10^6 Z (B/10^{-5} \,{\rm G}) (w/2.5 \times 10^8 \,{\rm cm \, s^{-1}})^2 \,{\rm GeV}$

whereas for supernova shocks, under similar conditions:

 $E_{\rm max} < 10^5 Z (B/10^{-6} \,{\rm G}) \,{\rm GeV}\,,$

Cesarsky & Montemerle 1983

Gamma-ray as Probes of Hadronic CR Accelerators

Particle acceleration in star clusters

10⁴

Previous Gamma-ray Observation of Cygnus Star-forming region

Cygnus X: an intense star-forming region close to Earth (1.4-1.7 kpc) extension ~ 200 pc hundreds of O stars, thousands of B stars several $x10^6 M_{\odot}$ solar mass in gas

Credit: ESA/Herschel Space Observatory

Wright et al. 2015

Fermi-LAT Collaboration 2011

Gal. longitude (deg)

LHAASO's Observation and Model

LHAASO's Observation

Source name	RA (°)	dec. (°)	Significance above 100 TeV ($\times \sigma$)	E _{max} (PeV)	
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	B LHAA
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	6 e
LHAASO J1839-0545	279.95	-5.75	7.7	0.21±0.05) epr
LHAASO J1843-0338	280.75	-3.65	8.5	0.26 - 0.10+0.16	o latit
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	4 4
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	-6 -8
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07 ^{+0.16}	-1910
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.0
LHAASO J2018+3651	304.75	36.85	10.4	0.27±0.02	0.50(0.10
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.0
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16

Celestial coordinates (RA, dec.); statistical significance of detection above 100 TeV (calculated using a point-like template for the Crab Nebula and LHAASO J2108+5157 and 0.3° extension templates for the other sources); the corresponding differential photon fluxes at 100 TeV; and detected highest photon energies. Errors are estimated as the boundary values of the area that contains ±34.14% of events with respect to the most probable value of the event distribution. In most cases, the distribution is a Gaussian and the error is 1 σ .

0.54 Crab flux @ 100TeV within 0.3deg of the best-fit position

Half array over 11 months

66 photon-like events within a radius of 6 degree with an estimated background of 9.5

7/66 from central 0.5 deg region v.s. 66*(0.5/6)²≈0.5
2/8 PeV event from central 0.5 deg region

Overdensity at the centre – injection!

E (PeV)	δE (PeV)	N_e	N_{μ}	$\theta(^{\circ})$	$D_{edge}(m)$	$\psi(^{\circ})$
1.08	0.16	5904	13.0	19.4	143	4.7
1.19	0.18	5480	14.1	34.4	73	0.2
1.20	0.18	6939	12.6	14.2	132	5.8
1.35	0.20	6938	8.4	27.1	43	2.9
1.38	0.20	6469	8.9	17.4	52	2.6
1.42	0.21	6258	6.6	12.7	57	0.1
1.78	0.27	6665	12.8	18.0	41	1.8
2.48	0.37	13815	29.1	33.0	99	5.2

Spectrum goes up to 2.5 PeV, without significant softening or cutoff feature

Energy-independent size Leptonic scenario: $r \sim (Dt_c)^{1/2} \sim decrease$ with E increase

Favor hadronic origin

 $\Gamma(E) = (2.71 \pm 0.02) + (0.11 \pm 0.02) \times \log_{10}(E/10 \text{ TeV})$

Gal. latitude (deg)

Physical Picture

29/7.7/0.36 (anti-)muon neutrino events above 1/10/100 TeV for 10-yr IceCube operation

3

2

3

2

1

0 deg

-1

-2

-3

-3

-2

-1

0

deg

1

2 3

Accelerator

0.9

0.8

0.7

0.6

0.5

6.1e-10 ergcm⁻²s⁻¹sr⁻¹

mit:

0.9

0.8

0.7

0.6

0.5

6.6e-10 ergcm⁻²s⁻¹sr

unit:

2 3

3

2

1

0

deg

+

0

deg

-1

1

0 deg

-1

-2

-3

3

2

1

0 deg

-1

-2

-3

-3

-2

-3

-2

-1

the position of the bubble centroid basically follow that of the accelerator / injection point

Discussion and Summary

Could other sources power the bubble?

Cygnus X-3

Unlikely.

Distance: 7.4 L ~ d²~ 25 \uparrow

Much Less gas target at 7.4 kpc $L_{EDD} \sim 10^{39}$ erg/s Required $L_p >> L_{EDD}$

PSR J2032+4127 / MT91 213

Unlikely.

L_{sd}~1.7x10³⁵ erg/s << required L_p Binary emission – variable as measured by MAGIC & VERISTAS

Influences on global CR transport in our Galaxy

D_{ISM}~10(E/1GeV)^{1/2} from secondary-toprimary CR ratio

How common could such giant slowdiffusion bubble appear in Galaxy?

Summary

- LHAASO has detected a giant ultrahigh-energy gamma-ray bubble in Cygnus star-forming region, extending a radius of at least 6 deg
- Spectra and morphology of the bubble support the origin of UHE emission to be hadronic interactions of diffusing protons injected from the centra accelerator and surrounding gas
- Protons need be accelerated well beyond PeV in the central source. Cygnus OB2 is the best candidate of the super PeVatron, and the first-ever located source of CR at 10 PeV
- Observations of IACT with higher angular resolution toward the core region can reveal more physics.

Thank you for your attention!