F21：新しい宇宙線空気シャワー シミュレーションコードの開発 （COSMOSの開発と将来の展開）

﨏 隆志（東大ICRR）

査定額と共同研究者

- 査定額 10 万円（旅費）
- 月例実務者会議（ハイブリッド）
- 大型計算機利用
- 共同研究者（所属は申請時）

常定芳基，藤井俊博（大阪公立大），毛受弘彰（名大），櫻井信之（徳島大），
吉越貴紀，大石理子，野中敏幸，武多昭道，西山竜一，釜江常好（東大），木戸英治，
榊直人（理研），笠原克昌（芝工大），芝田達伸，板倉数記（KEK），
大嶋晃敏，山崎勝也（中部大），日比野欣也，有働慈治（神大），
多米田裕一郎（大阪電通大），奥田剛司（立命館大），奈良寧（国際教養大），
土屋晴文（原子力機構）

活動内容（COSMOS開発）

－2013年末，有志による「モンテカルロシミュレーション研究会」として発足 （2014年から共同利用）

- Gfortran化，cmake compileの実現
- 共同研究者で分担し，多様な環境でのコンパイルと動作試験
- マイナーアップデート（環境依存を多数発見）
- Web page，manual，サンプルコード等の改良
- 2021年に非気体媒質•非地球大気での計算可能なCOSMOS Xを公開
- CORSIKA WSでの講演
- 「空気シャワ一観測による宇宙線の起源探索研究会」（一般＋学生セッショ ン）を毎年開催
- COSMOS講習会を実施
- 今年度（後述）
- 月例会議で Debug，etc…＜＝これがメイン！
- 太陽磁場中の計算導入
- COSMOS講習会開催（昨年度末），今年度も3月に実施予定
- ICRC2023でポスター発表

COSMOS X公開

- http://cosmos.icrr.u-tokyo.ac.jp/COSMOSweb/

cosmos Top
Now brand-new version of COSMOS,COSMOS X, is available.Enjoy it. Your feedbacks are welcome.
For old COSMOS version $<=8$, please go to the original page.
Welcome to COSMOS, a cosmic-ray air shower MC simulataion code
COSMOS is..

COSMOS X Manual

COSMOS X development team
November 18, 2021

Contents

1 What is COSMOS X?
1.1 What can we do with COSMOS X?
1.2 Structure
1.2.1 General structure
1.2.2 Users' flexibility: 3 user control files
1.3 What we can not do (now)?

2 How to use COSMOS X for the first time?
2.1 Environment
2.2 Download
2.3 Installation
2.4 Test program (First Kiss)
2.4.1 Compile and Run
2.4.2 Track visualization
2.4.3 Userhook output

3 How to edit the user control files?
3.1 primary file
3.2 param file
3.3 userhook function

How to optimize my simulation?
4.1 Hadronic interaction model ON GOING
4.2 Thinning
4.3 AS, hybrid method
4.4 Magnetic field
4.5 Electric field.
4.6 Non-air material, non-earth sphere

COSMOS Xの特徴

Development of a general purpose air shower simulation tool COSMOS X

T．Sako，${ }^{a}$ T．Fujii，${ }^{b, c}$ K．Kasahara，${ }^{d}$ H．Menjo，${ }^{e}$ N．Sakaki，${ }^{f}$ A．Taketa，${ }^{h}$ Y．Tameda ${ }^{i}$ for the COSMOS X development team

－笠原が開発した空気シャワーシミュレーションツールCOSMOSと検出器シミュレーション ツールEPICSを一体化したシミュレーションツール
－地球大気だけでなく，土，水，コンクリートなどの物質，地球以外の星での計算が可能。物質分布は同心球殻であること。
－プロセスごとにユーザー定義関数が呼ばれることで，反応過程にアクセス可能（GEANT4の イメージ）。

Extra-Terrestrial Air showers !?

- Fermi/LAT observation
- GCR + solar atmosphere
A.Abdo et al., ApJ, 734:116 (10pp), 2011

Helioprojective solar longitude (T_{x}, deg)
T. Linden et al., PRL 121, 131113 (2018)

HAWC Collaboration, Phys. Rev. Lett. 131, 051201 (2023)

太陽表面でのガンマ線放射

D．Seckel，T．Stanev and T．K．Gaisser，ApJ，382：652－666（1991）

太陽磁場•太陽大気での計算実装

Hakamada modelの実装

COSMOS講習会と

第六回空気シャワー観測による宇宙線の起源探索研究会

－2023年3月27－29日 ハイブリッド開催
－https：／／indico．cern．ch／event／1244851／

COSMOS講習会と

第七回空気シャワー観測による宇宙線の起源探索研究会

－2024年3月25－27日（25，26日午前が講習会）
－＠宇宙線研
－https：／／indico．cern．ch／event／1358926／

第七回空気シャワー箽測による宇宙線の起源深索研究会

－ 25 Mar 2024，12：45 $\rightarrow 27$ Mar 2024，18：00 Asia／Tokyo

Description

 す。

> - Cosmosiniay 会: 3月25日午後, 27日午前会場: 東大柏キャンノノス 郃厘TBD
> 会加者は作業用のノートバンコンを用意してください。

まとめ
－COSMOS Xの開発を通した空気シャワーシミュ レーションの研究を継続
－太陽磁場，太陽大気中における宇宙線の軌道計算，反応計算を実装
－COSMOS講習会，空気シャワー研究会を通した若手，グループ間交流を推進

ご支援ありがとうございます。
初心者ユーザーのご意見歓迎。卒業研究等のテーマにもどうぞ。

西村先生テキスト

- 2015年の講義をテキスト化
- ICRR Reportとして出版•配布
- 宇宙線研HP「年次資料•報告書」か らPDF DL可
－印刷版も余裕があります。希望者はご連絡ください。
－水本好彦先生，笠原克昌先生，中村健蔵先生，宇宙線研広報室には企画，編集，出版にわたってご協力いただきま した。ありがとうございます。

電磁相互作用の基礎とその応用一宇宙線現象の解釈のために一
（付録：第一回京都会議（1961）の頃のこと）

西村 純
東京大学名誉教授宇㕀科学矿究所名誉教授

COSMOS User Interface

COSMOS User Interface

********************************* hook for trace

* This is called only when trace > 60
* User should manage the trace information here.
* If you use this, you may need some output for

If you use this, you may need some output for $\operatorname{tr}_{4_{4000}}$ * at the beginning of 1 event generatio and at the ${ }_{12000}$ * generation so that you can identfy each event.
*
*
subroutine chookTrace
\#include "ZmediaLoft.h"
\#include "Ztrack.h"
\#include "Ztrackp.h"
\#include "Ztrackv.h"
\#include "Zobs.h"
\#include "Zobsv.h"
type(coord)::f
type(coord)::t
call ccoordForTr($25, \mathrm{f}, \mathrm{t})$
! $\quad \mathrm{t}$ is in meter.
tstep $=100 \quad$! timing step in nsec
iusbf $=$ TrackBefMove\%t/0.3/tstep
iusmv = MovedTrack\%t/0.3/tstep
energy $=$ MovedTrack\%p\%fm\%p(4)
if ((iusbf .ne. iusmv) .and. (energy .gt. 0.01)) then
write(TraceDev,'(2i7, 3i4, f10.1, 3f12.1, 2f10.1)')

* iusbf, iusmv,
* TrackBefMove\%p\%code, TrackBefMove\%p\%subcode,
* TrackBefMove\%p\%charge,
* energy,
* $\mathrm{f} \% \mathrm{r}(1), \mathrm{f} \% \mathrm{r}(2), \mathrm{f} \% \mathrm{r}(3)$,
* TrackBefMove\%t, MovedTrack\%t
endif

COSMOS Xの応用

＂Radiography using cosmic－ray electromagnetic showers and its application in hydrology，＂A．Taketa，R． Nishiyama，K．Yamamoto \＆M．Iguchi，Scientific reports（2022）12：20395

－二次宇宙線「電磁成分」の吸収で土中水分量を測定する cosmic electromagnetic particle（CEMP）radiography を提唱
－COSMOSX＋GEANT4で実験室での測定を再現
ニュートリノ反応の導入
－COSMOS Xは neutrino interaction modelは実装していない
－一般的なgenerator（GENIE，NuWRO，NEUT， Herwig．．．）の導入を検討
＝＞NEUTと将来の検討開始
－Step1：NEUTで計算した生成粒子群を COSMOS Xで任意のvertexに入射

水中のミュー粒子

10 TeV proton shower

10TeV Fe shower

- 電磁シャワーは計算しない（縦発達だけB近似で代用）オプション
- Muon，hadronのみ計算，表示
- ＜4300mは水
'primary' file

Primary definition

Of course, mono energy, simple power law are simpler

' p '	' GeV'	' KE/n' 'd'	0
	0.1	1.2	
	0.2	1.5	
	. 3	1.7	
	. 4	1. 9	
	. 5	1. 93	
	. 6	1.9	
	. 8	1.8	
	1.5	1.5	
	2.	1. 25	
	3.	. 8	
	4.	. 55	
	10.	. 1	
	20.	. 02	
	100.	2. $8 \mathrm{e}-4$	
	${ }^{0}{ }_{\text {GeV }}$	${ }^{0}$, KE/n, , d'	0
	. 1	. $7^{\text {K/n }}$	0
	. 2	1.	
	. 4	1. 2	
	. 6	1. 25	
	. 8	1.2	
	1.	1. 15	
	2.	. 7	
	5.	0.35	
	10.	0.065	
	30.	. 008	
	100.	2. e-4	
	0	0	
' CNO '	$\begin{gathered} \prime \mathrm{GeV} \\ \mathrm{c} \\ .1 \end{gathered}$	$\begin{aligned} & \text { 'KE/n' } \quad \text { ' d' } \\ & .013 \end{aligned}$	0 /
	. 2^{1}	. 28	
	. 3	. 4	
	. 5	. 65	
	. 8	. 8	
	1.	. 85	
	1.3	. 88	
	2.0	. 75	
	4.	. 35	
	6.	. 2	
	10.	. 07	
	20.	. 012	23
	0	0	

最近の応用例：Muography

（R．Nishiyama，A．Taketa，S．Miyamoto，K．Kasahara，Geophys．J．Int． （2016）206）

（a）COSMOS

，GEANT4

Smoothing
As a function of E and θ
injection

最近の応用例：Muography

（R．Nishiyama，A．Taketa，S．Miyamoto，K．Kasahara，Geophys．J．Int． （2016）206）

－ $1^{\text {st }}$ interaction category and $<X_{\max }>$

Toy Magnetic Field

