

ICRR INTER-UNIVERSITY AWARD TELESCOPE ARRAY

John Matthews - University of Utah Telescope Array Collaboration

21 Feb 2024

REPORTING FOR PI'S

• John Matthews: University of Utah – Institute for High Energy Astrophysics

- **Grigory Rubtsov**: Institute for Nuclear Research RAS
- Il Park: Sungkyunkwan University
- Anatoli Fedynich: Academica Sinica High-Energy Theory Group

TELESCOPE ARRAY

Telescope Array Detectors Surface Detector Array (3/2008)

- 507 Scintillator Counters
- 3 m² area
- 1.2 km spacing
- ~700 km²

Fluorescence Telescopes (2007)

- 3 Stations
- 12–14 Telescopes ea
- 3°-31° elevation
- FOV above SD Array

Scintillator Detector

Middle Drum

Black Rock Mesa

THE TELESCOPE ARRAY AND AUGER SPECTRA

- The spectrum difference between TA and Auger has long been a source of controversy – there was a ~9% difference in the normalization
- Shifting one or the other or both the spectra could be made to mostly agree
- Ogio-san and Fujita-san showed the difference is to be in the fluorescence yield and other constants used in setting the energy scales of both experiments.
- However, a significant energy difference persists at E > 10^{19.5} eV

ANISOTROPY SIGNAL/EXCESS REGIONS IN TA DATA (14 YRS)

TA Hotspot $E > 10^{19.75} eV$ 3.2σ post-trial

ICRR

Perseus-Pisces SC $E > 10^{19.6} eV$ 3.5σ post-trial **NGC 1068** E > 10^{19.6} eV 3.7σ post-trial

THE AUGER FOV OBSERVES *PORTIONS* OF THE SKY WITH TA EXCESSES BUT SEES NO SIGN OF EXCESS IN ANY OF THEM

- Auger Data Observes
- TA HotSpot at 1.0σ
- Perseus-Pisces at +0.1σ
- Auger does NOT see the whole HotSpot or PPSC region
- Is the Telescope Array HotSpot (or any of these) a real source?
- <u>Testing this is the main</u> <u>reason for building TAx4</u>

Auger 17 yrs E > 32 EeV (~10^{19.5} eV)

MEANWHILE:

TELESCOPE ARRAY ALSO HOSTS A MINI-AUGER ARRAY

The Surface Detector, the statistical engine of both experimen

Auger at TA

UofU (J.Matthews and S.Thomas) Arranged:

Site at TA selected (close to roads for water delivery)

- A unique site! SITLA land for faster approval procedure than BLM √
- Site staking √
- Cultural / environmental impact survey √
- Lease agreement \checkmark

14

Coincident events will allow us to cross-check signals, calibrations, and lateral distributions Auger scintillators to be added to the water tanks **The array is currently being commissioned**

CENTER TRIPLE OF AUGER@TA – AUGER-N, AUGER-S, TA-SCINT

Project title: Ultra-high-energy cosmic-ray origin studies with the Telescope Array and TAx4 surface detector

Principal investigator:

Grigory I. Rubtsov, Institute for Nuclear Research of RAS

Project Number: 2023i-F-001

Allocated Research Fund Total (Travel Expenses): 200,000 JPY

Research purpose:

Search for anisotropy and sources of cosmic rays, ultra-high-energy photons and neutrinos.

Search for ultra-highenergy photons with TA SD

Photon-induced showers: hadrons

- develop deeper in the atmosphere \Rightarrow arrive younger
- ► contain less muons ⇒ SD waveforms are less compressed

We use the neural-network classifier trained on both the

time-resolved waveforms

► and derived features: front curvature, Area-over-peak, number of FADC signal peaks, \u03c8²/d.o.f., S_b

Neural network blocks:

- Spatial detectors bundle (geometrical features)
- Waveform with largest integral charge (signal specifics)
- Temporal detector bundle (overall information)
- Reconstruction parameters (high-level information)

PoS(ICRC2023)324

JINST 17 (2022) 05, P05008

Neural network prediction on Monte-Carlo

Neural network prediction on data and Monte-Carlo

Telescope Array SD photon limits

PoS(ICRC2023)32

